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Quantum resources outperform classical ones for certain communication and computational tasks.

Remarkably, in some cases, the quantum advantage cannot be improved using hypothetical postquantum

resources. A class of tasks with this property can be singled out using graph theory. Here we report the

experimental observation of an impossible-to-beat quantum advantage on a four-dimensional quantum

system defined by the polarization and orbital angular momentum of a single photon. The results show

pristine evidence of the quantum advantage and are compatible with the maximum advantage allowed

using postquantum resources.
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Introduction.—The search for properties singling out
quantum mechanics from more general theories has re-
cently attracted much attention [1–8]. In this framework,
it is natural to address questions such as which is the
simplest task in which quantum mechanics provides an
advantage over classical theories and no hypothetical post-
quantum theory can do it better. The only requirement
defining these postquantum theories is that they cannot
assign a value larger than 1 to the sum of probabilities of
mutually exclusive possibilities. Some recent results have
shed light on this problem. Let us consider the class of
tasks requiring one to maximize a sum� of probabilities of
propositions tested on a system (this class includes some
communication complexity tasks [9] and all noncontextual
[10–12] and Bell inequalities). In Ref. [13] it is shown that
the maximum of � is given by CðGÞ, QðGÞ, or PðGÞ,
depending on whether classical, quantum, or general
resources are used. This numbers are three properties of
the graph G in which vertices represent propositions
and edges link exclusive propositions. The simplest task
of this class in which there is a quantum advantage but no
postquantum theory outperforms quantum mechanics
corresponds to the simplest graph such that CðGÞ<
QðGÞ ¼ PðGÞ, requiring a quantum system with the lowest
possible dimensionality �ðGÞ.

In this Letter we experimentally implement the simplest
task with quantum but no postquantum advantage. For this
purpose we exploit the properties of the graph of Fig. 1,
identified in [14] as the simplest one with these properties,
to perform an experiment in which quantum mechanics
gives a larger� than classical theories and no postquantum
theory can do it better. Specifically, for the graph in Fig. 1,
CðGÞ ¼ 3 while QðGÞ ¼ PðGÞ ¼ 3:5 with �ðGÞ ¼ 4.
Experimentally we adopt a photonic hybrid system of
dimension four, encoded in the polarization and a bidimen-
sional subspace of the orbital angular momentum. The high

fidelity and reliability of the present scheme allow us to
achieve a close to theory measured value and a direct test
of the exclusivity of the 10 involved orthogonal projectors.
There is a one-to-one correspondence between CðGÞ,

QðGÞ, and PðGÞ and the classical, quantum, and general
bounds for the following task: given an nðGÞ-vertex graph
G, each player is asked to prepare a physical system and
provide a list of nðGÞ yes-no questions (or tests) Qi on this
system, satisfying that questions corresponding to adjacent
vertices in G cannot both have the answer yes. The player
who provides the preparation and questions with the high-
est probability of obtaining a yes answer when one ques-
tion is picked at random wins.
If the questions refer to preexisting properties, that is, all

the answers have a predefined value, the highest probabil-
ity of obtaining a yes answer is CðGÞ=nðGÞ. For the graph
in Fig. 1, the sum of the probabilities of obtaining a yes
answer is
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FIG. 1. Graph representing the simplest task of the class
defined in the main text with quantum but no postquantum
advantage. Vertices represent propositions, edges link proposi-
tions that cannot be simultaneously true.
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� ¼ X10

i¼1

PðQi ¼ 1Þ � 3 ¼ CðGÞ; (1)

since at most 3 of the questions in Fig. 1 can be true. An
optimal classical strategy to win is described in the
Supplemental Material [15].

However, in quantum mechanics, preparing a four-level
system in the state

hc j ¼ ð0; 0; 0; 1Þ; (2)

and testing the propositions represented by the projec-
tors jviihvij over the following 10 (non-normalized)
vectors hvij,

hv1j ¼ ð0; 0; 1; 1Þ; (3a)

hv2j ¼ ð1;�1; 1;�1Þ; (3b)

hv3j ¼ ð1;�1;�1; 1Þ; (3c)

hv4j ¼ ð1; 0; 0;�1Þ; (3d)

hv5j ¼ ð1; 1; 1; 1Þ; (3e)

hv6j ¼ ð0; 1; 0;�1Þ; (3f)

hv7j ¼ ð�1; 1; 1; 1Þ; (3g)

hv8j ¼ ð1; 0; 0; 1Þ; (3h)

hv9j ¼ ð1; 1; 1;�1Þ; (3i)

hv10j ¼ ð1; 1;�1; 1Þ; (3j)

the probability of obtaining a yes answer is 7
20 ¼ 0:35,

which is the maximum using quantum resources [namely,
QðGÞ=nðGÞ], since for the graph in Fig. 1,

QðGÞ ¼ 7
2; (4)

which does not only go beyond the classical limit, but
actually saturates the bound for any postquantum theory.
The simplest way to grasp the previous bound is to notice
that any other assignment of probabilities to the vertices of
the graph in Fig. 1 either does not beat 7=2 or is incon-
sistent with the requirement that the sum of probabilities of
mutually adjacent vertices (i.e., those representing mutu-
ally exclusive propositions) cannot be larger than 1. As
explained in [13], there is a one-to-one correspondence
between the maximum of the sum of the probabilities and
the so-called fractional packing number of the graph in
which vertices represent propositions and edges exclusive-
ness. The fractional packing number of the graph in Fig. 1
is 7=2. The remarkable property of the graph in Fig. 1 is
that QðGÞ ¼ PðGÞ, so no postquantum theory can improve
this performance. Unlike standard Bell tests where hypo-
thetical postquantum theories can outperform quantum
mechanics [16], here quantum mechanics reaches the
maximum performance allowed by the laws of probability,
as in this case there is no way to assign probabilities out-
performing the quantum ones without violating that the
sum of the probabilities of exclusive propositions cannot
be higher than 1. Indeed, what makes this experiment

special is that it aims to the simplest scenario where the
quantum probabilities exhibit this curious property.
Experimental implementation.—To experimentally ver-

ify the quantum predictions we require a four-dimensional
system and the ability to project ququart states over all the
states in Eqs. (3) with high fidelity and high reliability.
These states are found to belong to all the five different
mutually unbiased bases of a ququart [17,18]. We encoded
such higher-dimensional quantum states by exploiting two
different degrees of freedom of the same photon. It has
been recently demonstrated that ququart states can be
efficiently generated by manipulating the polarization
and orbital angular momentum (OAM) [19]. The orbital
angular momentum of light is related to the photon’s
transverse-mode spatial structure [20] and can be exploited
for implementing qudits encoded in a single photon state
[21–23]. The combined use of different degrees of freedom
of a photon, such as OAM and spin, enables the imple-
mentation of entirely new quantum tasks [24]. Moreover,
the implementation of a ququart state by exploiting both
the polarization and a bidimensional subspace of orbital
angular momentum with fixed OAM eigenvalue jmj, the
so-called hybrid approach, does not require interferometric
stability and is not affected by decoherence due to different
Gouy phase for free propagation [25].
Here we considered a bidimensional subset of the

infinite-dimensional OAM space, denoted as o2, spanned
by states with OAM eigenvalue m ¼ �2 in units of @.
According to the nomenclature j’;�i ¼ j’i�j�io2 , wherej�i� and j�io2 stand for the photon quantum state ‘‘kets’’ in

the polarization and OAM degrees of freedom, respec-
tively, the logic ququart basis can be written as

fjH;þ2i; jH;�2i; jV;þ2i; jV;�2ig; (5)

where H (V) refers to horizontal (vertical) polarization.
According to these definitions, a generic ququart state
expressed as ða1; a2; a3; a4Þ, as in (3), can be experimen-
tally implemented as

a1jH;þ2i þ a2jH;�2i þ a3jV;þ2i þ a4jV;�2i: (6)

Analogously to [19], the manipulation of the OAM degree
of freedom has been achieved by adopting the q-plate
device [25,26]. On the polarization, the q plate acts as a
half-wave plate, while on the OAM it imposes a shift on the
eigenvalue m ¼ �2q, where q is an integer or half-integer
number determined by the (fixed) pattern of the optical axis
of the device. In our experiments we adopted a q plate with
q ¼ 1, thus manipulating the OAM subspace o2¼
fjþ2i;j�2ig. Interestingly, the ability of the q plate to
entangle and disentangle the OAM-polarization degrees of
freedom can be exploited for the preparation as well as for
the measurement of any ququart states.
Let us briefly give an example of how the q plate works.

By injecting a photon in the state jRi�j0io (jLi�j0io),
where jRi� (jLi�) refers to the right (left) circular polar-
ization, the output state reads jLi�j � 2io2 (jRi�j þ 2io2).
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It follows from the latter relations that by injecting on a q
plate a photon with null OAM value and horizontal polar-

ization, the state ðjR;þ2i þ jL;�2iÞ= ffiffiffi
2

p
is generated,

corresponding to a single photon entangled state between
two different degrees of freedom. In Table I we report the
projections over the ten ququart states on the input state
ð0; 0; 0; 1Þ ¼ jV;�2i needed to obtain the maximum pos-
sible violation in quantum mechanics.

The experimental setup adopted for such measurements
is shown in Fig. 2. A spontaneous parametric source

(SPDC) generates heralded single photon states, sent
through single mode (SM) fiber to setup (a) in order to
encode the input state ð0; 0; 0; 1Þ, generated adopting a
quantum transferrer� ! o2. This tool allows us to transfer
the information initially encoded in the polarization degree
of freedom to the OAM, by exploiting the features of the
q-plate device combined to a polarizing beam splitter
(PBS) [26]. In particular, the input state has been generated
by adopting the experimental setup in Fig. 2(a), where the
wave plates 1 were oriented to generate right circular
polarization, and the settings of wave plates 2 for vertical
polarization. Then, measurements have been carried out
adopting the setups in Figs. 2(c) and 2(d), depending on
whether the state on which the projection had to be carried
out was separable or entangled. For the projection on
separable states (denoted by S in Table I), we adopted a
deterministic transferrer o2 ! � based on a Sagnac inter-
ferometer with a Dove’s prism in one of its arms [27].
Thanks to this setup, any qubit encoded in a bidimensional
subspace of OAM j’io2 is transferred to the polarization

with probability p ¼ 1. When the analysis on entangled
states has to be carried out, it is possible to exploit the
capability of the q plate to disentangle the polarization to
the OAM of a single photon. Indeed, for such projections
we adopted a q plate and a standard polarization analysis
setup. The experimental results are reported in Table I and
compared to the theoretical value of 3.5. We observed a
good agreement with the theoretical expectations, thus
demonstrating the advantage of adopting quantum resour-
ces over classical ones.

TABLE I. Theoretical predictions and experimental results for
the probabilities of the different outcomes from measurements
on state ð0; 0; 0; 1Þ ¼ jV;�2i. We associate to each projection a
number used later to identify the state. In the column labeled
Type we specify if the state is separable (S) or entangled (E).

Probabilities

State projection Code Type Theory Experiment

ð0; 0; 1; 1Þ 1 S 1=2 0:69� 0:02
ð1;�1; 1;�1Þ 2 S 1=4 0:160� 0:007
ð1;�1;�1; 1Þ 3 S 1=4 0:145� 0:006
ð1; 0; 0;�1Þ 4 E 1=2 0:44� 0:01
ð1; 1; 1; 1Þ 5 S 1=4 0:33� 0:01
ð0; 1; 0;�1Þ 6 S 1=2 0:49� 0:01
ð�1; 1; 1; 1Þ 7 E 1=4 0:160� 0:007
ð1; 0; 0; 1Þ 8 E 1=2 0:51� 0:01
ð1; 1; 1;�1Þ 9 E 1=4 0:34� 0:01
ð1; 1;�1; 1Þ 10 E 1=4 0:218� 0:008

Sum 7=2 3:49� 0:03

FIG. 2 (color online). Experimental setup for the measurement of the probabilities pi;j. In the upper left corner is represented the
single photon source, based on spontaneous parametric down-conversion in a nonlinear crystal (BBO) cut for type II SPDC generation
of photon pairs and the compensation for the walk-off (Cw) followed by two interference filters (IF) with bandwidth �� ¼ 3 nm. See
the Supplemental Material [15] for further details. The four schemes we used for the experiment are presented in the central part of the
figure. Each state is prepared by one of the two setups of the ‘‘Generation’’ column: Setup (a) for separable states (quantum transferrer
� ! o2) and setup (b) for entangled ones [an ‘‘entangler’’ based on a q plate, a quarter-wave plate (QWP), and a half-wave plate
(HWP)]. The ‘‘Analysis’’ column shows the setups for the projection on the desired state. Setup (c) for separable states, a deterministic
transferrer o2 ! � (here C is a compensation stage), and setup (d) for entangled states, where a q plate is needed to have a
deterministic detection. (e) Experimental fidelities of generation and analysis for the ten states of the graph in Fig. 1. (f) Experimental
results of the exclusiveness test: occurrences of the nonorthogonality component of the experimental projectors adopted for the
measurements. All measured values of pði; jÞ and pðj; iÞ are reported in the Supplemental Material [15].

PRL 108, 090501 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

2 MARCH 2012

090501-3



As a second step, we provide the experimental verifica-
tion of exclusiveness relations between the different states
in (3), that is, the fact that states connected by an edge
cannot be simultaneously both true. We denote by a num-
ber from 1 to 10 the states involved in the experiment, and
measured the probabilities pði; jÞ and pðj; iÞ, where i; j ¼
1; . . . ; 10. For the generation of ququart states belonging
to entangled bases, we adopted the scheme reported in
Fig. 2(b). In Fig. 2(e) we report the experimental values
of probabilities pði; iÞ, measured in order to ensure a high
fidelity in the generation and reliability of all ququart states
involved in the experiment. In particular, we observed an
average fidelity of F ¼ ð0:9492� 0:0001Þ. To verify that
experimentally we implement orthogonal projectors, we
measured the probabilities pði; jÞ and pðj; iÞ with i � j. In
Fig. 2(f) we report the histogram of the occurrence of
different values of probabilities, that quantify the nonor-
thogonality component of the experimental projectors. We
observe a good agreement with the null value expected for
orthogonal states. Error bars have been evaluated by con-
sidering the Poissonian statistics of photon events.

Discussion.—The classical inequality (1) is valid under
the assumption that the measured propositions satisfy the
exclusiveness relations given by the graph in Fig. 1. The
results in Fig. 2(f) show a very good agreement with the
assumption. Even if the agreement between the experimen-
tal sum of probabilities is high, for some probabilities the
deviations from the theoretical results are larger than the
error bars.We attribute such discrepancy to the experimental
implementation of the projectors, whose orientation with
respect to the input state is slightly different from the ex-
pected one. Assuming that inequality (1) is only valid with
probability 1� � and assuming that the worst case scenario,
in which there are no links so the bound of the inequality is
10, occurs with probability �, to certify the quantum advan-
tage it is enough that 3ð1��Þþ10�<3:49; that is, � <
0:071. The impossible-to-beat quantum advantage is certi-
fied by the fact that all our 42 experimental probabilities
satisfy this condition and by the fact that the average value of
� is 0:016� 0:001. To our knowledge, this is the first time
an experiment performing a task with quantum but no post-
quantum advantage [16,28,29] has shown results which
demonstrate the quantum advantage and are compatible
with the impossibility of a better performance.

In summary, in this Letter we reported the experimental
implementation of the simplest impossible-to-beat quan-
tum advantage by adopting a photonic system of dimension
four. Such a system has been implemented by exploiting the
polarization and orbital angular momentum of single pho-
tons. We found a good agreement with theoretical expecta-
tion values. Moreover, we have experimentally verified all
the exclusiveness relations between the states that corre-
spond to the elements of the graph that models our system.
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