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Hybrid methods for witnessing entanglement in a microscopic-macroscopic system
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We propose a hybrid approach to the experimental assessment of the genuine quantum features of a general
system consisting of microscopic and macroscopic parts. We infer entanglement by combining dichotomic
measurements on a bidimensional system and phase-space inference through the Wigner distribution associated
with the macroscopic component of the state. As a benchmark, we investigate the feasibility of our proposal in
a bipartite-entangled state composed of a single-photon and a multiphoton field. Our analysis shows that, under
ideal conditions, maximal violation of a Clauser-Horne-Shimony-Holt-based inequality is achievable regardless
of the number of photons in the macroscopic part of the state. The difficulty in observing entanglement when
losses and detection inefficiency are included can be overcome by using a hybrid entanglement witness that
allows efficient correction for losses in the few-photon regime.
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I. INTRODUCTION

An open challenge for fundamental quantum physics is
to affirm the quantum nature of a system that puts together
a microscopic part and a mesoscopic one. This hybrid
scenario can emerge in completely different experimental
platforms ranging from individual spin systems interacting
with multimode cavity fields, such as transmon qubits in
coplanar transmission-line resonators [1,2], to ionic impurities
embedded in ultracold atomic samples, such as the systems
considered in some recent experiments reported in [3,4].
Another possible physical approach exploits a massive tiny
mirror interacting optomechanically with a single photon
within a Michelson interferometer [5–9]. This endeavor could
contribute to challenge the observability of quantum features
at the macroscopic level, which is one of the most fascinating
open problems in quantum physics. The difficulties inherent
in such a quest are manifold, and they are related on the
one hand to the unavoidable interaction of the system with
the surrounding environment [10–13]. On the other hand, one
faces the debated problem of achieving a measurement preci-
sion sufficient to observe quantum effects at such macroscales
[14,15]. In this context, it has been proven experimentally that
a dichotomic measurement performed upon a multiphoton-
entangled state is not sufficient to catch quantumness [16]. The
accuracy of the measurement is crucial for the observation of
quantum features and should be put on the same footing as
the use of proper entanglement and nonlocality criteria for
macroscopic quantum systems [15,17–21].

To successfully tackle the manipulation and characteriza-
tion of hybrid systems the following question is still open:
How can we ascertain the nonclassical nature of a multipartite
state that, per se, does not meet the criteria for quantumness
that have been designed for system components of equal
dimensionality? Our work provides a quantitative answer to
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this broad question. We introduce an investigative platform
that can be built up without the necessity for information on
the state itself, and this supports the general validity and broad
applicability of our results.

We introduce a hybrid method to demonstrate experimen-
tally the truly quantum mechanical features of a general
microscopic-macroscopic system beyond any assumption on
its state and without the necessity of any a priori state
knowledge. We infer the entanglement properties by means
of a hybrid approach that combines dichotomic measurements
on a bidimensional system and phase-space inferences through
the Wigner distribution associated with the macroscopic
component of the state. Here, through the use of a hybrid
entanglement test, we identify a valuable tool for our goals.
While the microscopic part of the state is measured using
spin-1/2 projection operators, the macroscopic counterpart
undergoes phase-space measurements based on the properties
of its Wigner function [17]. At variance with previous propos-
als [17,22], the approach presented in this paper is tailored to
fully exploit the polarization-spin degree of freedom on both
the microscopic and the macroscopic subsystems. We analyze
the effects of losses on a Clauser-Horne-Shimony-Holt-like
(CHSH-like) inequality test [23] and show that maximum
violation is achieved when losses are absent, regardless of
the size of the macroscopic part of the state. This is not the
case under nonideal conditions. However, we show how losses
can be efficiently taken into account to infer entanglement of
our multiphoton state.

As a paradigmatic microscopic-macroscopic system
(MMS), we investigate the state obtained from a fully
microscopic-entangled system through an amplification pro-
cess [24,25]. Such a system has been further considered
recently as a benchmark to perform nonlocality tests with
human-eye threshold detectors [26] or as a platform for
absolute radiometry [27]. At variance with respect to Refs. [24]
and [25], our approach does not require any assumption on the
system under investigation and hence represents a genuine
entanglement test.
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NICOLÒ SPAGNOLO et al. PHYSICAL REVIEW A 84, 032102 (2011)

The present paper is organized as follows. In Sec. II
we introduce and define the CHSH-based entanglement
inequality based on hybrid measurements for single-photon
and multiphoton modes. Then, in Sec. III we discuss how the
CHSH-based test defined in Sec. II can be modified to obtain
an entanglement witness tailored for application in a lossy
scenario. Finally, in Sec. IV we provide a specific example
of a joint optical system composed of a single-photon and a
multiphoton field based on the process of optical parametric
amplification. We then run both the CHSH-based test and the
entanglement witness on this system in order to identify in
which range of the system’s parameters the entanglement can
be addressed with our approach.

II. HYBRID ENTANGLEMENT TEST BASED ON
BELL’S INEQUALITIES

Let us consider a general MMS state with its microscopic
part embodied by a single-photon polarization state (a qubit).
We take the macroscopic part, on the other hand, as encoded
in the multiphoton state of a continuous-variable (CV) system.
The two subsystems are supposed to be entangled by a
mechanism whose details are inessential for our tasks here.
A benchmark state of such situation will be provided later.
Polarization measurements performed over the state of the
single-photon mode kA are described by the Pauli spin oper-
ator σ̂ A(φ) = |φ〉A〈φ| − |φ⊥〉A〈φ⊥|, where φ is the direction
identifying the polarization state in the Poincaré sphere and
φ⊥ is its orthogonal direction. The CV measurements, on
the other hand, are given by �̂B

χ,χ⊥ (αχ,χ ) = �̂B
χ (αχ )⊗1̂B

χ⊥ ,

where �̂B
i (αi) = D̂B

i (αi)(−1)n̂
B
i D̂

B †
i (αi) is the displaced parity

operator built from the displacement D̂B
i (αi) (αi∈C) and

the number operator n̂B
i , where i = {χ,χ⊥} stands for the

polarization state. Such operators can be directly measured
[28,29] by combining the input field with a coherent state
in a low-reflectivity beam splitter and by measuring the
parity of the output field [see Fig. 1(a)]. However, this
method requires a photon-counting technique with very high
efficiency, a condition extremely difficult to achieve with
present technology.

An indirect measurement of the average value of the
displaced parity operators can be performed by exploiting
the connection between 〈�̂(α)〉 and the Wigner function
of the state [see Fig. 1(b)]. Indeed, the average value of
the measurement operator on state ρB

i of the multiphoton
mode is related to the value of its Wigner function at
αi , WB

� (αi) = (2/π )Tr[�̂B
i (αi)ρB

i ]. The latter can be easily
reconstructed using homodyne measurements. We define
the qubit-CV correlator C(αχ,χ ; φ) = 〈σ̂ A(φ)⊗�̂B

χ,χ⊥ (αχ,χ )〉,
which is evaluated on a general MMS state ρAB , and the
CHSH-based entanglement parameter

B= C(α′
χ ,χ ′; φ′) + C(α′

χ ,χ ′; φ) + C(αχ,χ ; φ′) − C(αχ,χ ; φ).

(1)

A more detail discussion can be found in Appendix A.
As the average values of the outcomes of the σ̂ A(φ) and
�̂B

χ,χ⊥(αχ,χ ) measurements are limited by 〈σ̂ A(φ)〉 � 1 and
〈�̂B

χ,χ⊥(αχ,χ )〉 � 1, for all separable states the bound |B| � 2
holds. A violation of this bound witnesses an entangled

FIG. 1. (Color online) Hybrid entanglement test on an optical
MMS state generated by a “black-box.” The single-photon mode kA is
measured by a polarization-detection apparatus, while the multipho-
ton mode kB undergoes polarization projection and the measurement
of the displaced parity operators. (a) Direct measurement of the
�̂(α) displaced parity operators. (b) Indirect measurement of the
average value 〈�̂(α)〉 of the displaced parity operators by exploiting
a homodyne-detection apparatus.

state. The measurement settings for the single-photon mode
kA [multiphoton mode kB] are given by the measured
polarizations (φ, φ′) [measured polarizations (χ , χ ′) and the
chosen phase-space points (αχ , α′

χ )]. This requires a standard
polarization-detection system for the microscopic mode and a
homodyne-detection system for the multiphoton one, as shown
in the scheme presented in Fig. 1(b).

We conclude by observing that the inequality of Eq. (1)
becomes a nonlocality test when the displaced parity operators
are directly measured on the multiphoton field [see Fig. 1(a)],
since no assumptions are necessary on the detection apparatus.
In this case, the outcome of the σ̂ A(φ) and �̂B

χ,χ⊥ (αχ,χ )
measurements can only be ±1, and the use of a local-hidden-
variable (LHV) model imposes the bound |B| � 2 [23] on theB
parameter. A violation of this bound confutes all LHV theories.

III. HYBRID ENTANGLEMENT WITNESS WITH LOSSES

The test presented above can be modified so as to embody
a witness able to reveal entanglement when the state at hand
is affected by losses. This is modeled by inserting a beam
splitter of transmittivity η∈[0,1] in the path of the modes at
hand, “tapping” the corresponding signal [15]. The choice
η = 1 (η = 0) corresponds to a lossless (fully lossy) process.
To this end, the measurement performed on the �πχ polarization
of the multiphoton part is replaced by the operator [21]

ÔB
χ (αχ ; η) =

{
1
η
�̂B

χ (αχ ) + (
1− 1

η

)
1̂B

χ if η∈(0.5,1),

2�̂B
χ (αχ )−1̂B

χ if η∈(0,0.5).
(2)

In this way, the overall measurement on the macro-
scopic subsystem reads ÔB

χ,χ⊥(αχ,χ ; η) = ÔB
χ (αχ ; η)⊗1̂B

χ⊥ .
For any separable state being measured after the lossy
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process, |〈ÔB
χ,χ⊥(αχ,χ ; η)〉η| � 1 [20,21,30,31]. Hence, by

introducing the MMS correlator C̃η(αχ,χ,φ) = 〈σ̂ A(φ)
⊗ÔB

χ,χ⊥ (αχ,χ ; η)〉η, we define

Wη = C̃η(α′
χ ,χ ′,φ′) + C̃η(α′

χ ,χ ′,φ)

+ C̃η(αχ,χ,φ′) − C̃η(αχ,χ,φ). (3)

Any separable state undergoing a lossy process on mode kB

is bound to satisfy |Wsep
η |�2 (see Appendix B). Violation of

this inequality witnesses entanglement in the system. Such
a bound can be explained by considering that separable
states do not violate CHSH inequalities, and local processes,
such as losses, cannot increase their nonlocal character. It is
important to notice that, by virtue of the assumption that the
macrostate of mode kB undergoes losses η before (rather than
at) detection, this entanglement witness reveals the presence
of entanglement without any assumption on the MMS source
(see Fig. 1). On the other hand, the lossy mechanism can
be shifted to occur just before measurement, thus modeling
the effects of a nonideal detector. For η = 1, Wη coincides
with the CHSH-based parameter B in Eq. (1).

IV. EXPERIMENTAL BENCHMARK

In this section, we analyze in detail a specific optical
system to evaluate the effectiveness of our hybrid approach.
As a benchmark for the hybrid CHSH-based entanglement
test and entanglement witness described above, we analyze
the MMS-state source addressed in Ref. [24]. A layout of
the system is reported in Fig. 2. The polarization-singlet
state |ψ−〉AB = (|H 〉A|V 〉B−|V 〉A|H 〉B)/

√
2 of a photon pair

is generated in a nonlinear crystal through a spontaneous
parametric-down-conversion (SPDC) process. Here |H 〉 (|V 〉)
stands for the horizontal (vertical) polarization state. The
photon populating mode kB is then injected into an optical
parametric amplifier (OPA) in a collinear configuration. Since
the OPA implements a unitary operation, the symmetry of
|ψ−〉AB is preserved by the amplification process, and the
overall state |�−〉AB = (|φ〉A|�φ

⊥〉B−|φ⊥〉A|�φ〉B)/
√

2 main-
tains rotational invariance for any polarization basis. Here,
|�φ〉 are the multiphoton states generated by amplification of
a single-photon polarization state |φ〉. Quantum entanglement
between the micropart and the macropart of |�−〉AB has been
demonstrated [24] under a supplementary assumption on the
source [25]. The OPA performs the optimal cloning process

FIG. 2. (Color online) Layout of the MMS source based on
the process of optical parametric amplification of a single photon
belonging to an entangled pair.

only for equatorial polarization �πφ = (�πH+eıφ �πV )/
√

2. We
thus restrict our attention to this subset of polarization states,
which motivates our choice for σ̂ A(φ) performed above.

We now discuss the results of the CHSH-based test and the
application of the entanglement witness to the MMS state given
in Fig. 2. We begin analyzing the CHSH-based inequality (1)
in the lossless case (η = 1). The correlation operator evaluated
on |�−〉AB takes the form (see Appendix C)

C(Xχ,Pχ ,χ ; φ) = (1−Z) cos[2(χ−φ)]e−Z , (4)

where Z = 2(e−2gX
2
χ+e2gP

2
χ ) is a function of the

rotated variables Xχ = Xχ cos(χ/2)−Pχ sin(χ/2) and
P χ = Xχ sin(χ/2)+Pχ cos(χ/2). (Xχ,Pχ ) are the field
quadratures and αχ = Xχ+ıPχ . The correlator in Eq. (4)
is maximized at the origin of the phase space, where
C(0,0,χ ; φ) = cos[2(χ − φ)], which is independent of the
gain of the amplifier g and the number of generated photons
n = sinh2 g. The correlator has the same form as a Bell-CHSH
test performed on a polarization photon pair, where spin-1/2
operators are measured. The CHSH-based parameter B is
then maximized by choosing the measurement settings for
(φ,φ′,χ,χ ′) corresponding to such cases, which ensures the
maximum degree of violation of the local realistic boundary,
i.e., B= 2

√
2.

We are now in a position to address the possibility of
observing MMS entanglement under realistic experimental
conditions. We thus analyze the effects of detection ef-
ficiency at the homodyne apparatus, while other sources
of experimental imperfections, as well as a more detailed
derivation, are discussed in Appendix D. The measurement
of the generalized parity operator on the multiphoton mode kB

can be performed using homodyne detection. Furthermore,
we include in the qubit-CV correlator the possibility of a
nonunitary detection efficiency on mode kB (see Appendix D).
By restricting our attention to the origin of the phase space,
where maximum nonclassical effects are achieved, we get
Cη(0,0,χ ; φ) = cos[2(χ−φ)]L(g,η), where

L(g,η) = η[1 + 2n(1 − η)]

[1 + 4η(1 − η)n]3/2
(5)

is a loss function for the test. Hence, the maximum amount
of violation is directly determined by the loss function as

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

LHV

g 3
g 2
g 1
g 0.4
g 0

FIG. 3. (Color online) CHSH-based parameter Bη as a function
of the number of lost photons (1 − η)〈n〉 for different values of the
gain g. We show the local realistic boundary BLHV = 2.
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FIG. 4. (Color online) (a) Contour plot of the shifted loss function
L(g,η)−2−1/2 as a function of the gain g and the detection efficiency
η. (b) Contour plot of the negativity of the Wigner function of an
amplified single-photon state [32] against g and η, evaluated at the
origin of the phase space. In both panels the solid line divides the
region of entanglement (|Bη|>2, above the line) from the one in
which entanglement cannot be inferred (|Bη| � 2, below the line).

Bη =BL(g,η). In Fig. 3 we show the value of Bη as a function
of the average number of lost photons, (1−η)〈n〉, where
〈n〉 = 3n + 1 is the mean number of the generated photons
after the amplification process. The CHSH-based inequality of
Eq. (1) is satisfied when only a moderate number of photons is
lost. A lower bound ηlim = 1/

√
2 for the detection efficiency

can be found below, where a violation is no longer observed.
On the other hand, at set values of η there is a minimum
gain glim(η) above which the presented test cannot detect
MMS-entangled correlations. Such a threshold value decreases
with the reduction of the efficiency η. The behavior of Bη in
the (η,g) plane is shown by the contour plot in Fig. 4(a). In
order to relate the violation of the CHSH-based inequality to
intrinsically nonclassical features enforced at the level of the
macropart of the state, Fig. 4(b) reports the negativity of the
Wigner function of an amplified single-photon state versus η

and g [32]. We observe that the transition of Bη to the region
below the classical limit is directly linked to the decrease
in the negativity of the Wigner function itself. Indeed, the
value of the MMS correlator Cη is determined by the excursion
of the Wigner function in Xχ = Pχ = 0, as a function of the
polarization of the injected photon.

We complement the analysis of our MMS by discussing the
use of the entanglement witness described above. The evalua-
tion of the correlation operator over state |�−〉AB after losses
leads to C̃η(αχ,χ,φ) = h(η)Cη(αχ,χ ; φ), where h(η) = 1/η

[h(η) = 2] for 1/ 2 < η � 1 (0 � η � 1/2). More details can

be found in Appendix E. Therefore, the entanglement witness
can be directly obtained from the CHSH-based parameter as
Wη = h(η)Bη. In Fig. 5(a) we report the dependence of Wη

as a function of η and g. For single-photon states (i.e., at
g = 0), the correction of losses introduced by the factor h(η)
allows one to observe MMS entanglement up to η ∼ 0.35.
As the number of photons in the macrostate increases, the
damping in the negativity of the Wigner function induced
by losses scales more rapidly than η, and the h(η)-correcting
term becomes less effective. Figure 5(b) shows the behavior of
the effective overall loss function h(η)L(η,g), highlighting
the thresholds in g and η, above which entanglement is
observed. We note the nonmonotonic behavior obtained for
the inefficiency parameter at η = 0.5, which is a property of
the witness itself. However, because Eq. (2) is a witness for
entanglement, no special meaning can be attached to the lack
of violation of the separability condition |Wsep

η | � 2.

V. CONCLUSIONS AND PERSPECTIVES

We have proposed an experimentally oriented approach to
detect entanglement in a MMS-entangled state involving a
single-photon and a multiphoton bipartite system. We have
used a hybrid CHSH-based inequality and an entanglement
witness, whose use against such a class of states is effective.
Furthermore, the CHSH-based inequality can be adopted as
a genuine nonlocality test when a direct measurement of the
displaced parity operators is performed on the multiphoton
field. As an experimental benchmark, we applied the proposed
inequalities to the bipartite state obtained by amplification
of an entangled single-photon-singlet state. While our study
spurs further interest in the identification of suitable tests in
the high-loss and large-photon-number region, it paves the way
to an experimentally feasible demonstration of entanglement
properties in an interesting class of states lying at the very
border between quantum and classical domains.
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Università di Roma, for hospitality and acknowledges support
from the UK EPSRC (EP/G004579/1).

FIG. 5. (Color online) (a) Plot of Wη vs the detection efficiency η and the nonlinear gain g. (b) Contour plot of the effective loss function
h(η)L(η,g). Entanglement can be revealed in the region above the black line. (c) Summary of the results obtained from our tests. We identify
three regions in (η,g) space, depending on whether entanglement can be demonstrated with our techniques.
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APPENDIX A: HYBRID
POLARIZATION–CONTINUOUS-VARIABLE

CHSH-BASED TEST

In this section we review the CHSH-based inequality
performed in the paper. Our test is the extension of the Bell’s
inequality test proposed by Wodkiewicz in Ref. [17]. We begin
by focusing our attention on the multiphoton mode kB . Our
MMS, which is generated by amplification of an entangled
polarization photon pair, is strongly correlated in such a degree
of freedom. To exploit it, we define the measurement operator
of the multiphoton state as

�̂B
χ,χ⊥ (αχ,χ ) = �̂B

χ (αχ ) ⊗ 1̂B
χ⊥ . (A1)

Here �̂B
i (αi) = D̂B

i (αi)(−1)n̂
B
i D̂

B†
i (αi) is the generalized par-

ity operator, where D̂B(αi) is the displacement operator and
the subscript i = {χ,χ⊥} describes the polarization mode. This
definition of the measurement operator corresponds to the
application of a displacement operator D̂B

i (αi) followed by
a parity measurement.

In order to detect the correlations present in the system in
the polarization degree of freedom, we perform a measurement
of the Pauli operator σ̂ A(φ) on a single-photon mode. Here,
σ̂ (φ) is the Pauli σ̂z operator along the direction of the
Bloch sphere identified by the equatorial polarization state
�πφ = 2−1/2(�πH + eıφ �πV ). The correlation of the joint system
is then defined as

C (αχ,χ ; φ) = 〈σ̂ A(φ) ⊗ �̂B(αχ,χ )〉, (A2)

where the averages are evaluated on the investigated |�〉AB

MMS state. Since this correlation operator corresponds to a
set of dichotomic measurements, we can use the CHSH-based
inequality [23]

B = C (α′
χ ,χ ′; φ′) + C(α′

χ ,χ ′; φ)

+ C (αχ,χ ; φ′) − C (αχ,χ ; φ) � 2. (A3)

Here, the measurement settings for the single-photon mode
kA are given by the measured polarizations (φ, φ′), while
the measurement settings for the multiphoton mode kB are
given by the measured polarizations (χ , χ ′) and the chosen
phase-space points (αχ , α′

χ ).

APPENDIX B: HYBRID
POLARIZATION–CONTINUOUS-VARIABLE

ENTANGLEMENT WITNESS WITH INEFFICIENT
DETECTORS

In this section we discuss in detail the hybrid entanglement
witness defined in the paper. Such an inequality is an
extension of the CHSH-based test of Eq. (A3), where different
measurement operators are exploited in the multiphoton mode.
The main idea of this extension is to take into account
detection losses in order to build measurement operators
apt for witnessing entanglement with an inefficient detection
apparatus. To this end, the measurement performed on the �πχ

polarization of the multiphoton field can be replaced by the
operator [20,21]

ÔB
χ (αχ ; η) =

{
1
η
�̂B

χ (αχ ) + (
1 − 1

η

)
1̂B

χ if 1
2 < η � 1,

2�̂B
χ (αχ ) − 1̂B

χ if η � 1
2 ,

(B1)

where η is the detection efficiency of the apparatus. Such
definition of the measurement operator is performed in order
to correct the detrimental effect of losses on the properties
of the detected state. Let us consider a general state |�〉Bχ on
spatial mode kB and polarization �πχ . (Although we illustrate
our argument using pure states of mode B, our arguments apply
equally to mixed states.) After losses occur, the state evolves
into a density matrix ρ̂

η B

� χ . The average value of ÔB
χ (αχ ; η) on

such a density matrix gives [21]

〈
ÔB

χ (αχ ; η)
〉
η
=

{
π
2η

W
η B

� (αχ ) + (
1 − 1

η

)
if 1

2 < η � 1,

2W
η B

� (αχ ) − 1 if 0 � η � 1
2 .

(B2)

Here, W
η B

� (αχ ) is the Wigner function of the detected state,
which is related to the Wigner function of the initial state
before losses |�〉Bχ by the Gaussian convolution

W
η B

� (Xχ,Pχ )= 2

π (1 − η)

∫ ∞

−∞

∫ ∞

−∞
dX′

χdP ′
χ

×WB
� (X′

χ ,P ′
χ )e−2

[
(Xχ −√

ηX′
χ )2

1−η
+ (Pχ −√

ηP ′
χ )2

1−η

]
.

(B3)

The measured Wigner function given in Eq. (B3) corresponds
to the s-parametrized quasiprobability distribution WB

� ,(αχ,s)
of |�〉Bχ with s = − (1−η)

η
[30,31]. Exploiting the properties of

such distributions, it is straightforward to prove that [21]∣∣〈ÔB
χ (αχ ; η)

〉
η

∣∣ � 1 (B4)

for all values of η. We can then define the overall measurement
performed on the multiphoton state as

ÔB
χ,χ⊥(αχ,χ ; η) = ÔB

χ (αχ ; η) ⊗ 1̂B
χ⊥ (B5)

with average values bounded by |〈ÔB
χ,χ⊥(αχ,χ ; η)〉η| � 1. The

two-mode correlation operator for the entanglement witness is
then defined as

ˆ̃C (αχ,χ ; φ; η) = σ̂ A(φ) ⊗ ÔB
χ,χ⊥(αχ,χ ; η), (B6)

where σ̂ A(φ) is the Pauli operator for mode kA along the
direction φ in the Bloch sphere. Starting from these definitions,
we construct the witness operator

Ŵ = ˆ̃Cη(α′
χ ,χ ′; φ′) + ˆ̃Cη(α′

χ ,χ ′; φ)

+ ˆ̃Cη(αχ,χ ; φ′) − ˆ̃Cη(αχ,χ ; φ). (B7)

In order to define the bounds on 〈Ŵ〉 satisfied by separable
states, we consider a generic MMS-separable state described
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by the density matrix ρ̂sep = ∑
i pi ρ̂

A
i ⊗ ρ̂B

i . After detection
losses on the multiphoton mode kB , such a state evolves into
ρ̂sep = ∑

i pi ρ̂
A
i ⊗ ρ̂

η B

i , which gives

|〈Ŵ 〉sep
η | =

∣∣∣∣∑
i

pi

(〈Â′〉i〈B̂ ′〉iη + 〈Â′〉i〈B̂〉iη

+〈Â〉i〈B̂ ′〉iη − 〈Â〉i〈B̂〉iη
)∣∣∣∣, (B8)

where

〈B̂〉iη = Tr
[
ÔB

χ,χ⊥(αχ,χ ; η)ρ̂η B

i

]
,

〈Â〉i = Tr
[
σ̂ A(φ)ρ̂A

i

]
, 〈Â′〉i = Tr

[
σ̂ A(φ′)ρ̂A

i

]
, (B9)

〈B̂ ′〉iη = Tr
[
ÔB

χ ′,χ ′
⊥
(α′

χ ,χ ′; η)ρ̂η B

i

]
.

As all these terms satisfy |〈X̂〉i | � 1 with X̂ = {Â,Â′,B̂,B̂ ′},
we get ∣∣Wsep

η

∣∣ � 2, (B10)

which is the desired witness condition. We conclude by
discussing the features of this inequality. On one side, we
note that the derivation of this bound is performed under
the assumption that the state is measured with efficiency η.
Hence, such a witness operator permits us to demonstrate
the entanglement before detection losses. On the other side,
no assumption is necessary on the MMS source due to the
generality of the derived criterion. Finally, we note that for
the case η = 1 this entanglement witness coincides with the
CHSH-based inequality of Eq. (A3), given that no assumption
is made on the efficiency of the detection apparatus.

APPENDIX C: CORRELATOR FOR THE CHSH-BASED
TEST IN IDEAL CONDITIONS

In this section we report the full calculation of the correlator
C (Xχ,Pχ,χ ; φ) reported in the main paper. We begin with the

two-mode correlation Q̂, defined as

Q̂(αχ,αχ⊥ ,χ ; φ) = σ̂ A(φ) ⊗ (
�̂B

χ (αχ ) ⊗ �̂B
χ⊥(αχ⊥)

)
. (C1)

This operator corresponds to the measurement of the gener-
alized parity operator on both polarization modes { �πχ,�πχ⊥}
of the macropart of our state. The average Q(αχ,αχ⊥ ,χ ; φ) =
AB〈�−|Q̂|�−〉AB is related to the correlator of the CHSH-
based inequality by

C (αχ,χ ; φ) = 2

π

∫
d2αχ⊥Q(αχ,αχ⊥ ,χ ; φ). (C2)

This expression holds by considering the closure relation
2
π

∫
d2αχ⊥�̂χ⊥(αχ⊥) ≡ 1χ⊥ , which in turn comes from the

normalization of the Wigner function.

1. Two-mode correlator

We now calculate the two-mode correlatorQ(αχ ,αχ⊥ ,χ ; φ).
Let us recall the expression of the MMS state under investiga-
tion:

|�−〉AB = 1√
2

(|φ〉A
∣∣�φ

⊥
〉
B

− |φ⊥〉A|�φ〉B
)
, (C3)

where the state has been expressed in a generic equatorial
polarization basis { �πφ,�πφ⊥}. The value of Q(αχ,αχ⊥ ,χ ; φ) is
obtained by exploiting the relation between the two-mode op-
erator �̂B

χ (αχ ) ⊗ �̂B
χ⊥(αχ⊥) and the two-mode Wigner function

B〈�|�̂B
χ (αχ ) ⊗ �̂B

χ⊥(αχ⊥)|�〉B = π2

4 W�(αχ,αχ⊥ ). We get

Q(αχ,αχ⊥ ,χ ; φ) = π2

8

[
WB

φ⊥ (αχ,αχ⊥ ) − WB
φ (αχ,αχ⊥)

]
. (C4)

Here, WB
φ⊥ and WB

φ stand for the two-mode Wigner functions
of amplified |φ⊥〉 and |φ〉 single-photon states, respectively,
evaluated at the rotated phase-space variables {αχ,αχ⊥}. The
correlator QAB(αχ,αχ⊥ ,χ ; φ) is then derived starting from the
expression of the Wigner functions [32] (where S = sinh g and
C = cosh g)

WB
φ⊥(αχ,αχ⊥ ) = 4

π2

{
4
[|αφ⊥|2(1 + 2S2) + 2CS Re

(
α2

φ⊥eıφ
)] − 1

}
e
−2

[
(|αφ⊥ |2+|αφ |2)(1+2S2)+2CSRe

(
α2

φ⊥ eıφ−α2
φeıφ

)]
,

(C5)

WB
φ (αχ,αχ⊥) = 4

π2

{
4
[|αφ|2(1 + 2S2) + 2CS Re

(
α2

φeıφ
)] − 1

}
e
−2

[
(|αφ⊥ |2+|αφ |2)(1+2S2)+2CSRe

(
α2

φ⊥ eıφ−α2
φeıφ

)]

by rotating the polarization of the phase-space variables
{αφ,αφ⊥} as

αφ = eı(χ−φ)/2[αχ cos(χ − φ) − ıαχ⊥ sin(χ − φ)],
(C6)

αφ⊥ = eı(χ−φ)/2[αχ⊥ cos(χ − φ) − ıαχ sin(χ − φ)].

Finally, we replace the complex phase-space variables with
the real quadratures (Xχ,Pχ,Xχ⊥ ,Pχ⊥ ) and obtain the full
expression for Q(Xχ,Pχ,Xχ⊥ ,Pχ⊥ ,χ ; φ). However, this is too
lengthy and rather uninformative and will not be reported here.

2. Single-mode correlator

We now calculate the single-mode correlator
C (Xχ,Pχ,χ ; φ). The choice of this measurement operator
allows us to capture the nonlocal features of the MMS state
generated by amplification of an entangled photon pair. To
evaluate this quantity we exploit Eq. (C2),

C (Xχ,Pχ ,χ ; φ) = 2

π

∫ ∫
dQ(Xχ,Pχ ,Xχ⊥ ,Pχ⊥ ,χ ; φ),

(C7)
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where the integral in d2αχ⊥ has been replaced by the integral
in the quadrature variables d= dXχ⊥dPχ⊥ . After straight-
forward algebra, we obtain the following expression for the
correlator:

C (Xχ,Pχ,χ ; φ) = cos[2(χ − φ)]e−2
(
e−2gX

2
χ+e2gP

2
χ

)
× [

1 − 2
(
e−2gX

2
χ + e2gP

2
χ

)]
, (C8)

where {Xχ,P χ } define a set of rotated variables.
Xχ = Xχ cos(χ/2) − Pχ sin(χ/2) and P χ = Xχ sin(χ/2) +
Pχ cos(χ/2). The maximum of such a correlation operator
is obtained at the origin of the phase space and reads
C (0,0,χ ; φ) = cos[2(χ − φ)].

APPENDIX D: CORRELATOR FOR THE CHSH-BASED
TEST UNDER DETECTION LOSSES AND NONUNITARY

INJECTION EFFICIENCY

Here we report in detail on the calculation of the correlator
Cp,η, when detection losses and a nonunitary injection effi-
ciency are taken into account. These two effects represent
the two main issues for an experimental observation of
entanglement in a MMS.

The model for the effect of losses at the detection stage
is performed by inserting a beam splitter of transmittivity η

along the transmission path of the field on mode kB . The other
port of this beam splitter is injected with a vacuum state, thus
introducing vacuum-noise fluctuations in the system. Here we
demonstrate that the correlator Cη in the presence of detection
losses η can be evaluated as the convolution of the lossless
correlator C with a Gaussian function of the form

Cη(Xχ,Pχ,χ ; φ) = 2

π (1 − η)

∫ ∫
dX′

χdP ′
χ C (X′

χ ,P ′
χ ,χ ; φ)

× e
−2

[
(Xχ −√

ηX′
χ )2

1−η
+ (Pχ −√

ηP ′
χ )2

1−η

]
. (D1)

We begin by writing the density matrix ρ̂�−
η of the MMS state

after losses occur at the detection stage:

ρ̂�−
η = 1

2 {|φ〉A〈φ|⊗L[|�φ⊥〉B〈�φ⊥|]
+ |φ⊥〉A〈φ⊥|⊗L[|�φ〉B〈�φ|]
− |φ〉A〈φ⊥|⊗L[|�φ⊥〉B〈�φ|]
− |φ⊥〉A〈φ|⊗L[|�φ〉B〈�φ⊥|]}, (D2)

where L[·] is the map that describes the action of detection
losses. The evaluation of the correlation operator Q on this
density matrix leads to

Qη(αχ,αχ⊥ ,χ ; φ) = π2

8

[
WB

η,φ⊥ (αχ,αχ⊥ ) − WB
η,φ(αχ,αχ⊥ )

]
,

(D3)

where WB
η,φ and WB

η,φ⊥ are the Wigner functions of the
macrostates |�φ〉 and |�φ⊥〉 after losses. The action of
detection losses in the phase space can be written in the form
of a Gaussian convolution [33]

Wη(X,P ) =
∫ ∫

dX′dP ′ W (X,P )Kη(X,P,X′,P ′), (D4)

where

Kη(X,P,X′,P ′) = 2

π (1 − η)
exp

{
− 2

[
(X − √

ηX′)2

1 − η

+ (P − √
ηP ′)2

1 − η

]}
.

The correlator Cη is obtained from Qη as

Cη(Xχ,Pχ,χ ; φ) = 2

π

∫ ∫
dQη(Xχ,Pχ,Xχ⊥ ,Pχ⊥ ,χ ; φ).

(D5)

By explicitly writing the Wigner function after losses as a
Gaussian convolution we obtain

Cη(Xχ,Pχ,χ ; φ) = 2

π

∫ ∫
dXχ⊥dPχ⊥I(X′

χ ,P ′
χ ), (D6)

where

I(X′
χ ,P ′

χ ) =
∫ ∫

dX′
χ⊥dP ′

χ⊥Q(X′
χ ,P ′

χ ,X′
χ⊥ ,P ′

χ⊥ ,χ ; φ)

×
∫ ∫

dXχ⊥dPχ⊥Kη(Xχ⊥ ,Pχ⊥ ,X′
χ⊥ ,P ′

χ⊥ ).

(D7)

By changing the integration variables as Xχ⊥ → X̃χ⊥ =
Xχ⊥ −√

ηX′
χ⊥√

1−η
and Pχ⊥ → P̃χ⊥ = Pχ⊥−√

ηP ′
χ⊥√

1−η
, we have the ex-

plicit function

I(X′
χ ,P ′

χ ) = 2|J |
π (1 − η)

∫ ∫
dX̃χ⊥dP̃χ⊥e

−2
(
X̃2

χ⊥+P̃ 2
χ⊥

)

×
∫ ∫

dX′
χ⊥dP ′

χ⊥Q(X′
χ ,P ′

χ ,X′
χ⊥ ,P ′

χ⊥ ,χ ; φ),

(D8)

where |J | = 1 − η. Equation (D1) is found by integrat-
ing over dX̃χ⊥dP̃χ⊥ , using Eq. (C2), to have I(X′

χ ,P ′
χ ) =

C (X′
χ ,P ′

χ ,χ ; φ) and replacing this in Eq. (D6).
We now proceed with the explicit calculation of Eq. (D1).

As a first step, we rotate the quadratures (Xχ,Pχ ) and the
integration variables (X′

χ ,P ′
χ ) as

X χ = Xχ cos(χ/2)−Pχ sin(χ/2),
(D9)

Pχ = Xχ sin(χ/2)+Pχ cos(χ/2)

with X = (X,X′) and P = (P,P ′) and the convention that
only primed (unprimed) variables are involved in the equations
above. The correlator Cη can then be expressed as a function of
the rotated variables. After replacing the expression of Kη in
the correlator Cη, it is matter of some straightforward (although
tedious) algebra to find that

Cη(Xχ,P χ,χ ; φ) = cos[2(χ − φ)]e−2
[

X
2
χ

M + P
2
χ

N

]
√

1 + 4η(1 − η)n

×
{

1 − (1 − η)(1 + 2ηn)

1 + 4η(1 − η)n
− 2η

[
e2gX

2
χ

M2
+ e−2gP

2
χ

N 2

]}
(D10)
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with M = ηe2g + (1 − η) and N = ηe−2g + (1 − η). This
expression is maximized at the origin of the phase space,
reading

Cη(Xχ,P χ,χ ; φ) = cos[2(χ − φ)]L(η,g), (D11)

where the loss function L(η,g) has the form

L(η,g) = η + 2η(1 − η)n

(1 + 4η(1 − η)n)3/2
. (D12)

In typical experimental conditions, the injection of the
single photon of the entangled pair |ψ−〉AB into the OPA
occurs with an efficiency p < 1 because of the imperfect
matching between the optical modes of the amplifier and
the single-photon one. Such nonideality can be modeled by
allowing for a probability p of correct single-photon injection
and a complementary probability (1 − p) that just a vacuum
state is injected in the amplifier and no correlations between
the two output modes are set. This modifies the density matrix
of the output modes as

ρ̂ψ−
p = p|ψ−〉AB〈ψ−| + (1 − p)

1̂A

2
⊗ |0〉B〈0|, (D13)

where 1̂A = |H 〉A〈H | + |V 〉A〈V | is a completely mixed
single-photon polarization state, and |0〉B〈0| is the vacuum
state. The bipartite state after the amplification process then
reads

ρ̂�−
p =p|�−〉AB〈�−| + (1 − p)

1̂A

2
⊗ (ÛOPA|0〉B〈0|Û †

OPA).

(D14)

We can now proceed with the calculation of Ĉ (αχ,χ ; φ) as

C (αχ,χ ; φ) = p AB〈�−|σ̂ A(φ) ⊗ �̂B(αχ,χ )|�−〉AB

+(1−p)Tr

[
1̂A

2
⊗(ÛOPA|0〉B〈0|Û †

OPA)

× σ̂ A(φ)⊗�̂B(αχ,χ )

]
. (D15)

As the second term factorizes (due to the lack of quantum

correlations) and Tr[ 1̂A

2 σ̂ A(φ)] = 0, such a contribution is null.

Therefore, under nonideal injection efficiency, the correlator
is related to the ideal one according to Cp(Xχ,Pχ ,χ ; φ) =
p C (Xχ,Pχ,χ ; φ). This result can be extended to the case of
nonunitary detection efficiency, leading to

Cη,p(Xχ,Pχ,χ ; φ) = p Cη(Xχ,Pχ ,χ ; φ). (D16)

APPENDIX E: CORRELATOR FOR THE ENTANGLEMENT
WITNESS AFTER DETECTION LOSSES AND

NONUNITARY INJECTION EFFICIENCY

Here we sketch the steps needed for the calculation of the
correlator C̃p,η entering the entanglement test based on the
witness operator of Eq. (B7) under losses and nonideal photon
injection. By using arguments similar to those put forward in
the previous sections, we have

C̃η(αχ,χ ; φ) = 1
2

{
Tr

[
L[|�φ⊥〉B〈�φ⊥|]ÔB

χ,χ⊥(αχ,χ ; η)
]

− Tr
[
L[|�φ〉B〈�φ|]ÔB

χ,χ⊥(αχ,χ ; η)
]}

, (E1)

where L[·] is the map describing the lossy pro-
cess. We focus on the case η � 1/2. By exploiting
results that have been previously obtained here, we
have C̃η(αχ,χ ; φ) = π

4η

∫
d2αχ⊥(Wη

φ⊥(αχ,αχ⊥ )−W
η

φ (αχ,αχ⊥ )).
We now exploit the chain of relations

π

4

∫
d2αχ⊥

(
W

η

φ⊥(αχ,αχ⊥) − W
η

φ (αχ,αχ⊥ )
)

= 2

π

∫
d2αχ⊥

π2

8

(
W

η

φ⊥ (αχ,αχ⊥) − W
η

φ (αχ,αχ⊥)
)

= 2

π

∫
d2αχ⊥Qη(αχ,αχ⊥ ,χ ; φ) = Cη(αχ,χ ; φ) (E2)

to get C̃η(αχ,χ ; φ; η) = 1
η
CAB

η (αχ,χ ; φ). With an analogous
procedure, we obtain

C̃η(αχ,χ ; φ; η) =
{

1
η
Cη(αχ,χ ; φ) if 1

2 < η � 1,

2 Cη(αχ,χ ; φ) if η � 1
2 .

(E3)

We can further generalize this result to take into account
the effect of a nonunitary injection efficiency and finally get
C̃η,p(αχ,χ ; φ; η) = p C̃η(αχ,χ ; φ; η).
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