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We present the experimental realization of the optimal estimation protocol for a Pauli noisy channel.

The method is based on the generation of 2-qubit Bell states and the introduction of quantum noise in a

controlled way on one of the state subsystems. The efficiency of the optimal estimation, achieved by a Bell

measurement, is shown to outperform quantum process tomography.
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Introduction.—Quantum noise is unavoidably present in
any realistic implementation of quantum tasks, ranging
from quantum communication protocols [1] to quantum
information processing devices and quantum metrology
[2,3]. The performance and the optimization of quantum
tasks quite often depend on the level of noise which is
present in the physical realization considered. It is there-
fore of great interest to develop experimental methods to
estimate the level of noise in the system under examination
as precisely as possible. Quantum process tomography
(QPT) [4], which has already been implemented in various
experimental realizations [5,6], represents a well-known
method to identify an unknown noise, but it lacks the
notion of efficiency. In many realistic scenarios, however,
some a priori information on the kind of noise is available
and therefore the problem of measuring it is equivalent to
estimate few noise parameters in the most efficient way.
This is the context of quantum channel estimation [7],
which is based on quantum state estimation theory, a merge
of statistical estimation theory and quantum physics pio-
neered by Helstrom and Holevo [8,9]. The aim of this
Letter is to provide the first genuine experimental applica-
tion of quantum channel estimation theory. The experi-
mental realization presented here is based on a quantum
optical setup, but it opens new perspectives of applications
to a great variety of physical scenarios and quantum tech-
nologies, from atomic to solid state systems.

A quantum channel estimation problem is generally
formulated as follows. We need to estimate the true value
of the d-dimensional parameter � for a given smooth para-
metric family �� of noisy quantum channels. The estima-
tion scheme is twofold: first we prepare a quantum system
described by the density operator � as an input to the
channel ��, then we perform some quantum state measure-
ment on the output state ��ð�Þ in order to estimate the
channel parameters in the most efficient way. Thus, the
problem is to seek an optimal input � for the channel and
an optimal measurement on the output state ��ð�Þ. The

notion of optimality is here based on the minimization of
the covariance matrix V�½�;M�

V�½�;M�ij ¼ E�½ð ��i � �iÞð ��j � �jÞ�; (1)

where i; j ¼ 1; . . . ; d, ��j and �j denote the estimated and
the true values for the j-th component of the noise parame-
ter, respectively, E� denotes the expectation with respect to
the measurement procedure employed, and M is a projec-
tive measurement operator.
In this Letter we present an experimental implementa-

tion of an optimal quantum channel estimation scheme for
a qubit Pauli channel (PC). The action of such a family of
channels on the density operator � of a qubit can be
described as [4]

�fpg½�� ¼
X3

i¼0

pi�i��i; (2)

where �0 is the identity operator, f�ig (i ¼ 1, 2, 3) are the
three Pauli operators �x, �y, �z, respectively, and fpig
represent the corresponding probabilities (

P
3
i¼0 pi ¼ 1).

The family of Pauli channels represents a wide class of
noise processes that includes several physically relevant
cases such as the depolarizing channel, which will be
considered in the following, the dephasing and the bit-
flip channels.
The optimal channel estimation scheme is achieved as

follows [10]. The optimal input state is represented by a
Bell state for two qubits, for example, the singlet
state jc�i ¼ 1ffiffi

2
p ðj01i � j10iÞ, where only one of the qubits

is affected by the noisy channel while the other one is
left untouched. The optimal measurement consists of
a Bell measurement on the two qubits at the channel
output, namely, the projective measurement M ¼
fjc�ihc�j; jcþihcþj; j��ih��j; j�þih�þjg. The out-
come probabilities then provide an optimal estimation of
the channel parameters pi.
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As mentioned above, this scheme is optimized by min-
imizing the covariance matrix of the estimation error (1).
According to the quantum Cramér-Rao theorem [9], the
minimum covariance matrix in this case is given by [10]

Vp;min ¼ Jp½�ME��1

¼
p1ð1� p1Þ �p2p1 �p3p1

�p1p2 p2ð1� p2Þ �p3p2

�p1p3 �p2p3 p3ð1� p3Þ

2
664

3
775;

(3)

where Jp½�ME� is the quantum Fisher information matrix

[9] of a maximally entangled input state �ME. We want to
point out that this scheme is optimal for any number of
input qubits. Actually, no additional entanglement among
the input qubits and no collective measurements at the
output can increase the efficiency of the present scheme
[10]. Moreover, it can be also straightforwardly general-
ized to estimate any general noise process of the form (2),
where the � operators are replaced by any set of unitary

operators Vi such that Tr½ViV
y
j � ¼ 2�ij. The same scheme

can also straightforwardly extended to estimate any gen-
eralized Pauli channel for quantum systems in arbitrary
finite dimension [10].

Wewill now present the experimental implementation of
this optimal estimation scheme for a quantum optical
setup, where the state of the two qubits is represented by
polarization states of two photons and the action of the
Pauli channel is introduced in a controlled way by employ-
ing liquid crystal retarders, as explained in the following.
The method has been first applied to estimate a general
Pauli channel, with independent values of the probabilities
pi. Then it has been applied to a depolarizing channel
(DC), namely, the case of isotropic noise, with p1 ¼ p2 ¼
p3 ¼ p

3 , where the parameter p completely specifies the

channel itself, and the minimum variance [Eq. (1) for
the one-dimensional case] is given by pð1� pÞ. In this
case the procedure simplifies and, in the following, we
show that only two projective measurements, M0 ¼
fjc�ihc�j; 1� jc�ihc�jg, are needed.

Experimental scheme.—Different techniques have been
exploited to experimentally implement a PC acting on a
single qubit state [11–14]. The optimal noise estimation
protocol, proposed in this work, was implemented by the
interferometric scheme shown in Fig. 1(a). Precisely, a
two-photon entangled source [15] generates the two-qubit
singlet state jc�i ¼ 1ffiffi

2
p ðjHViAB � jVHiABÞ, where two

qubits are encoded in the polarization degree of freedom,
with H (V) referring to the horizontal (vertical) polariza-
tion of photons A and B. In our setup, the single qubit noisy
channel is operating only on one of the two entangled
particles (i.e., photon A). The general Pauli channel (PC)
consists of a sequence of liquid crystal retarders (LC1 and
LC2) in the path of photon A. The LCs act as phase

retarders, with the relative phase between the ordinary
and extraordinary radiation components depending on the
applied voltage V. Precisely, V� and V1 [Fig. 1(b)] corre-
spond to the case of LCs operating as half–wave plate
(HWP) and as the identity operator, respectively. The
LC1 and LC2 optical axes are set at 0� and 45� with
respect to the V polarization. Then, when the voltage V�

is applied, the LC1 (LC2) acts as a �z (�x) on the single
qubit. We were able to switch between V1 and V� in a
controlled way and independently for both LC1 and LC2.
The simultaneous application of V� on both LC1 and LC2
corresponds to the �y operation. We could also adjust the

temporal delay between the intervals in which the V�

voltage is applied to the two retarders. We define t1, t2,

FIG. 1 (color online). (a) Experimental setup. Photons A and B
are spatially and temporally superimposed on a symmetric beam
splitter (BS). The optical path delay �x allows us to vary the
arrival time of the photons on the BS. Photons are collected by
using an integrated system, composed by a GRIN lens (GL) and
a single mode fiber, and then detected by single photon counters.
The same setup allows us to perform the ancillary assisted
quantum process tomography (AAQPT) after removing the
BS. Quantum state tomography (QST) [20] on the output state
is performed by using quarter–wave plates (QWPs), half–wave
plates (HWPs), and polarizing beam splitters (PBSs). (b) Scheme
of the implemented Pauli channel. t1, t2, t3 represent the time
intervals of �x, �y, or �z activation. Both t1, t2, t3 and the

repetition time T can be varied by a remote control.
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t3 respectively as the activation time of the operators �x,
�y or �z and T is the period of the LCs activation cycle, as

shown in Fig. 1(b).
Experimental implementation of the Pauli channel (an-

isotropic noise).—A general PC was generated by varying
the four time intervals t1, t2, t3, and T. The intervals ti are
related to the probabilities pi (i ¼ 1, 2, 3), introduced in
Eq. (2), by the following expression: pi ¼ ti

T . The proba-

bility p0 of the identity operator is given by p0 ¼ 1� �
T

(with � ¼ t1 þ t2 þ t3).
To obtain the probabilities associated to the four projec-

tion operators M, we measured the coincidence counts
between the two outputs of the BS. In fact, these proba-
bilities are related to the interference visibility measured
by the interferometer in Fig. 1(a). The half–wave plate
(HWP*) and quarter–wave plate (QWP*) of Fig. 1(a)
were used to project the noisy state onto the four different
Bell states.

Different configurations of the noisy channel were in-
vestigated by implementing the optimal noise protocol
estimation for each configuration. A summary of four
relevant experimental results, corresponding to different
probabilities associated to the Bell states, are given in
Fig. 2.

In the measurements shown in Fig. 2, case (a) corre-
spond to a noiseless channel (identity transformation)
while cases (b), (c), and (d), correspond to different com-
plete noisy channels with p0 ¼ 0 (i.e., we set T ¼ �). For
each process, the first column shows the relative weights
between the Pauli operators acting in the channel. From

these values it is possible to calculate the theoretical ones.
For instance, let us consider the process (d) where the �z,
�y, and �x act, respectively, for T

8 ,
4T
8 , and 3T

8 . The ex-

pected values of pi are, for this process, p0 ¼ 0, p1 ¼ 3
8 ,

p2 ¼ 4
8 , and p3 ¼ 1

8 . The slight disagreement between the

expected theoretical values and the experimental measured
ones are mainly due to the finite rise and decay times of the
electrical signal driving the LC devices.
We have implemented the protocol by using always the

same input state and projecting it on the Bell basis. It is
worth noting that this is totally equivalent to entering the
PC with the four Bell states and to projecting them into the
jc�i state.
Experimental implementation of the depolarizing chan-

nel (isotropic noise).—The condition t1 ¼ t2 ¼ t3 corre-
sponds to the depolarizing channel, with the three Pauli
operators acting on the single qubit with the same proba-

bility p ¼ �
T ¼ t1þt2þt3

T . This parameter was changed by

fixing the times ti and varying the period T. The optimal
protocol to estimate the value of p was realized by using
the Bell state jc�i, as mentioned above.
The DC was activated on photon A. In this case the

projective measurement M0 ¼ fjc�ihc�j;1�jc�ihc�jg,
consisting of just two projectors, is sufficient to optimally
estimate p and has been performed for several noise de-
grees. For each level of noise, we estimated the channel

parameter pexp as pexp ¼ N ss

N ssþCint
, where Cint are the co-

incidences between the two outputs of the BS in interfer-
ence condition and N ss is the number of events in which
the two photons are detected on the same BS output side.
N ss was estimated by knowing the amount of coinci-
dences out of interference. The typical peak interference
measured for the state jc�i as a function of the path delay
�x is shown in Fig. 2 of the Supplemental Material [16]. In
Fig. 3(a) we report the experimental values pexp corre-

sponding to the different values of T. In the corresponding
inset we show the pexp errors evaluated by propagating the

Cint and N ss Poissonian errors. They are in good agree-
ment with the expected theoretical behavior.
Ancillary assisted quantum process tomography.—The

experimental results, just discussed for the optimal estima-
tion of the depolarizing channel, have been compared with
the probability values of p which can be obtained by
exploiting the ancillary assisted quantum process tomog-
raphy (AAQPT) [13,17–19]. The action of a generic chan-
nel operating on a single qubit can be written as
E½�� ¼ P3

i;j¼0 �ij�i��j, where the matrix �ij character-

izes completely the process.
AAQPT is based on the following procedure: (i) prepare

a two-qubit maximally entangled state and reconstruct it
by quantum state tomography (QST) [20]; (ii) send one of
the two entangled qubits through the channel E;
(iii) reconstruct the output two-qubit state by QST and
obtain, in this way, the matrix �ij from the two-qubit

FIG. 2 (color online). Experimental probabilities of measuring
the four Bell states obtained for four different cases of aniso-
tropic noise. The black boxes report the corresponding theoreti-
cal values. (a) Identity: noiseless channel. (b) �y: only one Pauli

matrix, �y is acting on the state jc�i. (c) Partially anisotropic

DC: �x and �z operate for the same time interval, in fact the
probabilities of measuring the states jcþi and j�þi are equal.
(d) Totally anisotropic DC: each Pauli operator operates for a
different time interval.
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output density matrix. For a DC, the matrix �ij is expressed

as [4]

�Theo
p ¼

ð1� pÞ 0 0 0

0 p
3 0 0

0 0 p
3 0

0 0 0 p
3

0
BBBBB@

1
CCCCCA
: (4)

We implemented the AAQPT algorithm by injecting the
state jc�i into the DC and we reconstructed by QST the
density matrices of the input and output states for several
noise degrees [see Fig. 1(a)]. We obtained the experimental
matrix �exp for different values of T and, for each value of

T, we found the parameter p maximizing the fidelity
between the experimental �exp and the theoretical �Theo

p

process matrices. The experimental results are shown in
Fig. 3(b). Even in this case the theoretical behavior is fully
satisfied. However, comparing these results with those
obtained by the optimal protocol, we observe that the latter
leads to the same results, but with a much lower number of
measurements. In fact, in this case, only the two projec-
tions M0 are needed while, to implement the AAQPT
algorithm, 16 measurements are necessary. Moreover, by
adopting our experimental setup we were able to demon-
strate that the value of p and the DC action do not depend
on the input state. In fact the AAQPTwas realized with all
the four Bell states entering the DC, obtaining the same
results of those shown in Fig. 3(b).

It is worth noting that, even if the AAQPT gives a more
complete information on the process compared to the
implemented optimal protocol, the latter allows us to
achieve a more accurate value of p. The inset in Fig. 3(a)

shows that, for the optimal protocol, the measured standard

deviation reaches the lower bound given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=Np

[i.e., the square root of Eq. (1) for the one-dimensional case
divided by N], where N is the dimension of the sample
used to evaluate p, thus demonstrating experimentally
the attainability of the Cramér-Rao bound. We show in
the inset in Fig. 3(b) the standard deviations, well above the
optimal bound, obtained with the AAQPT (see the
Supplemental Material [16] for details about the numerical
estimation). The lower optimal bound represented by the
black curve is below the experimental data, demonstrating
that AAQPT is far away from the optimal estimation pro-
tocol presented in this work.
Conclusion.—An optimal protocol allowing the most

efficient estimation of a noisy Pauli channel has been
experimentally implemented in this work. The action of
the noisy channel was introduced on one qubit of a maxi-
mally entangled pair in a controlled way. The efficiency of
this method has been compared to the one achieved by
quantum process tomography, demonstrating that the opti-
mal protocol allows us to achieve the theoretical lower
bound for the errors and to perform the estimate of the
noisy channel with a lower number of measurements. This
method can be profitably applied when some knowledge on
the noise process is available and can be successfully
implemented in quantum-enhanced technologies involving
the management of decoherence.
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FIG. 3 (color online). Noise parameter estimation for the DC case. (a) Measured values of pexp vs �
T by implementing the M0

projective measurements. Continuous red line corresponds to the theoretical behavior. Inset: experimental values of the standard
deviations for the optimal protocol implemented by theM0 projective measurements. They are obtained by propagating the Poissonian
uncertainties. The solid line represents the expected theoretical behavior. (b) Experimental probabilities associated to the experimental
matrix � vs �

T . Values of p are obtained by maximizing the fidelity F between theoretical and experimental matrix �. Error bars are

calculated by considering the Poissonian uncertainty associated to the coincidence counts, and simulating different matrices of the
process, obtaining, in this way, different values of p. Inset: experimental values of the standard deviations for the AAQPT. These have
been calculated by a simulation based on the Poissonian uncertainty associated to the coincidence counts. The solid line represents the
optimal bound. (c),(d) Experimental (left side) and theoretical (right side) matrices � for T ¼ � and T � 3�.
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