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In the quantum sensing context most of the efforts to design novel quantum techniques of sensing have

been constrained to idealized, noise-free scenarios, in which effects of environmental disturbances could

be neglected. In this work, we propose to exploit optical parametric amplification to boost interferometry

sensitivity in the presence of losses in a minimally invasive scenario. By performing the amplification

process on the microscopic probe after the interaction with the sample, we can beat the losses’ detrimental

effect on the phase measurement which affects the single-photon state after its interaction with the sample,

and thus improve the achievable sensitivity.

DOI: 10.1103/PhysRevLett.105.113602 PACS numbers: 42.50.Ex, 42.50.Dv, 42.50.St

The aim of quantum sensing is to develop methods to
extract the maximum amount of information from a system
with a minimal disturbance on it. Indeed, the possibility of
performing precision measurements by adopting quantum
resources can increase the achievable precision going be-
yond the semiclassical regime of operation [1–3]. In the
case of interferometry, this can be achieved by the use
of the so-called N00N states, which are quantum mechani-
cal superpositions of just two terms, corresponding to
all the available photons N placed in either the signal
arm or the reference arm. The use of N00N states can
enhance the precision in phase estimation to 1=N, thus
improving the scaling of the achievable precision with
respect to the employed resources [4,5]. This approach
can have wide applications for minimally invasive sensing
methods in order to extract the maximum amount of infor-
mation from a system with minimal disturbance. The
experimental realization of protocols involving N00N
states containing up to 4 photons have been realized in
the past few years [6–10]. Other approaches [11,12] have
focused on exploiting coherent and squeezed light to gen-
erated fields which approximate the features of N00N
states. Nevertheless, these quantum states turn out to be
extremely fragile under losses and decoherence [13], un-
avoidable in experimental implementations. A sample,
whose phase shift is to be measured, may at the same
time introduce high attenuation. Since quantum-enhanced
modes of operations exploit fragile quantum mechanical
features, the impact of environmental effects can be much
more deleterious than in semiclassical schemes, destroying
completely quantum benefits [14,15]. This scenario puts
the beating of realistic, noisy environments as the main
challenge in developing quantum sensing. Very recently,
the theoretical and experimental investigations of quantum
states of light resilient to losses have attracted much atten-
tion, leading to the best possible precision in optical

two-mode interferometry, even in the presence of experi-
mental imperfections [16–21].
In this work, we adopt a hybrid approach based on a high

gain optical parametric amplifier operating for any polar-
ization state in order to transfer quantum properties of
different microscopic quantum states in the macroscopic
regime [22,23]. By performing the amplification process of
the microscopic probe after the interaction with the sam-
ple, we can beat the losses’ detrimental effect on the phase
measurement which affects the single-photon state after
the sample. Our approach may be adopted in a minimally
invasive scenario where a fragile sample, such as biological
or artifacts systems, requires as few photons as possible
impinging on it in order to prevent damages. The action of
the amplifier, i.e., the process of optimal phase covariant
quantum cloning, is to broadcast the phase information
codified in a single photon into a large number of particles.
Such multiphoton states have been shown to exhibit a high
resilience to losses [24–26] and can be manipulated by
exploiting a detection scheme which combines features of
discrete and continuous variables. The effect of losses on
the macroscopic field consists in the reduction of the
detected signal and not in the complete cancellation of
the phase information as would happen in the single-
photon probe case, thus improving the achievable sensitiv-
ity. This improvement does not consist in a scaling factor
but turns out to be a constant factor in the sensitivity
depending on the optical amplifier gain. Hence, the sensi-

tivity still scales as
ffiffiffiffi

N
p

, where N is the number of photons
impinging on the sample, but the effect of the amplification
process is to reduce the detrimental effect of losses by a
factor proportional to the number of generated photons.
Let us review the adoption of single photons in

order to evaluate the unknown phase ’, Fig. 1(a). The
phase ’ introduced in the path k2 is probed by sending to
the sample N input photons, each one in the state
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2�1=2ðj1ik1 þ j1ik2Þ. After the propagation, the sample in-
troduces a phase ’ on the probe beam and each photon is
found in the state 1

ffiffi

2
p ðj1ik1 þ ei’j1ik2Þ. The two modes k1

and k2 are then combined on a beam splitter (BS) and
detected by ðD0

1; D
0
2Þ with an overall detection efficiency

equal to t. N performed experiments leads to an output
signal equal to I ¼ IðD0

1Þ � IðD0
2Þ ¼ tN cos’, whose fluc-

tuations are given by � ¼ ðtNÞ1=2. The uncertainty on the
phase measurement around the value �

2 can hence be esti-

mated as �’ ¼ ð@I@’Þ�1�I ¼ 1
ffiffiffiffi

tN
p , the semiclassical shot

noise limit, and the sensitivity of the interferometer can

be evaluated as S1 phot ¼ 1
�’ ¼ ffiffiffiffiffiffi

tN
p

.

In order to avoid the detrimental effect of a low value of t,
our strategy involves the amplification of the single-photon
probe, Fig. 1(b). In the theory and experiment described
here, the twomodes k1 and k2 correspond to two orthogonal
polarization modes: horizontal (H) and vertical (V) associ-
ated to the same longitudinal spatial mode k. The input
single photon is prepared in the polarization state: jþi ¼
1
ffiffi

2
p ðjHi þ jViÞ. After the propagation over the interferome-

ter, the photon acquires the unknown phase ’: j’i ¼ 1
ffiffi

2
p �

ðjHi þ e{’jViÞ. The amplification performed by the optical

parametric device generates the output state j�’i ¼
ÛOPAj’i ¼ cos’2 j�þi þ { sin’2 j��i, where j�þ;�i are

the wave functions described in Ref. [24]. Precisely, the
state j�þi (j��i) presents a Planckian probability distri-
bution as a function of photons polarized ~�� ( ~�þ) and a
long tail distribution as a function of photons polarized ~�þ
( ~��). The two distributions belonging to the state j�þi and
j��i partially overlap, but become distinct on the border of
the Fock states’ plane [27]. For the state j�’i, the average
number of photons emitted over the polarization mode ~�þ
is equal to hnþi ¼ �nþ cos2 ’

2 ð2 �nþ 1Þwith �n ¼ sinh2g and

g the gain of the amplifier, while the average number of
photons emitted over the polarization mode ~�� is equal to
hn�i ¼ �nþ sin2 ’

2 ð2 �nþ 1Þ. The previous expressions lead

to a phase-dependent intensity with a visibility V ¼
hnþi�hn�i
hnþiþhn�i ! 0:50 for g ! 1. The resilience to losses of

such multiphoton fields [25] renders them suitable for the
implementation of quantum information applications in
which noisy channels and low detection efficiency are
involved. We consider the case in which the losses are
unavoidable during the detection process and happen after
the single-photon amplification (Fig. 1). After the propaga-
tion over a lossy channel, the state evolves from j�’ih�’j
into amixed state �̂’

�. For details on the explicit expressions
of the coefficients of the density matrix �̂’

�, see [25].
After the amplification stage and the transmission losses,

the received field is analyzed through single-photon detec-
tors (D0

1; D
0
2) in the f ~�þ; ~��g polarization basis. Our aim

is to compare the achievable sensitivity with and without
the optical amplifier (g ¼ 0). To take into account experi-
mental imperfections, we divide the losses t in two con-
tributions: the first one includes all the losses between the
sample and the optical amplifier (p), while the second
parameter takes into account all the inefficiencies up to
the detection stage (�): t ¼ p� �. Our strategy cannot
compensate for losses that occur before the amplifier (p),
but can compensate for large (even very large, if the gain is
high enough) losses after the amplification (�). A first
insight on this property of the optical parametric amplifier
has been given in Ref. [28] by analyzing the signal to noise
of the amplification of a coherent state signal in lossy
conditions. The sensitivity Sampl, obtained by measuring

the difference hDi ¼ hnþi � hn�i intensity signals pro-
vided by the detectors around the phase value ’ ¼ �

2 , is

found to be

Sampl ¼
ffiffiffiffi

N
p

p�c

f�2½p �nð4cþ 2Þ þ 2 �nc� þ �½pcþ 2 �n�g1=2 ; (1)

with c ¼ 2 �nþ 1.
Let us first consider the case p ¼ 0:5: Fig. 2(a) reports

the logarithm of the enhancement of the squared sensitivity

E ¼ ð Sampl

S1 phot
Þ2 versus g and �. E represents the reduction

factor in the number of photons sent onto the sample in
order to obtain the same information on the phase ’, by
exploiting the amplification strategy with respect to the
single-photon probe scheme. As it can be observed in
Fig. 2(a), a large improvement can be obtained in the
regime of high losses and large gain of the amplifier. The
motivation of such behavior is the following: the present
approach allows us to increase the number of detected
photons by a factor 4 �n with respect to the single-photon
case keeping a visibility of the fringe patterns reduced only
to 50% (for g ! 1, p ¼ 1). The enhancement E is then
slightly affected by the reduction in the visibility, due to the
amplification noise [29], while it is significantly improved
by the increase in the detected signal.
In Fig. 2(b) we report the trend of the enhancement as a

function of losses 0:15 � p � 0:5 and 0:05 � � � 0:2 for
a nonlinear gain of g ¼ 4:5. Such a range corresponds to

FIG. 1 (color online). Scheme for the phase measurement.
(a) Interferometric scheme adopted to estimate the phase (�)
introduced in the mode k2. (b) Interferometric scheme adopting a
single photon and the optical parametric amplifier: the amplifi-
cation of the single-photon state is performed before dominant
losses.
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typical values of losses and detection efficiency achievable
in practical schemes. We observe that also in this regime an
enhancement greater that 1 can be obtained. For large
values of the gain g the enhancement saturates to the value
Elim ¼ p

�ð2pþ1Þ [contour plot in Fig. 2(c)]; we can then

identify a critical value of p above which the enhancement
is greater than 1: pcrit ¼ �

1�2� . For � � 0:33 no enhance-

ment can be achieved by exploiting the amplification strat-
egy [see Fig. 2(d)].

The previous theoretical predictions have been experi-
mentally tested by adopting a high gain optical parametric
amplifierwith amaximumgaing ¼ 4:5. A detailed descrip-
tion of the apparatus can be found in Refs. [24,27]. The
single-photon probe was generated in a first nonlinear crys-
tal and heralded by a trigger detector DT ; hence, the phase
shifting’was introduced via a Soleil-Babinet compensator.
Then the probe photon was superposed to an ultraviolet
pump beam and injected into a second nonlinear crystal
realizing the optical parametric amplifier. The output radia-
tion was then coupled with a single mode fiber and detected
with single-photon detectors. Additional controlled losses
were introduced by adopting neutral optical filters. For the
sake of simplicity we propose working in the single-photon
counting regime; in order to describe the detection appara-
tus in a linear regime, the following condition for the
average number of detected photons must be satisfied
�hn�i � 1 (experimental details can be found in the sup-
plementarymaterial [30]).We found experimentally a value
of p equal to 0.15 due to spatial and spectral mismatch
between the injected single photon and the ultraviolet

pump beam (k0p). The output fringe patterns have been

recorded for different values of the gain g and hence of
the generated number of photons in the amplifier. In the
extreme condition with � ¼ 3� 10�4 and g ¼ 4:5, we
observed an enhancement of a factor �210, as shown in
Fig. 3(a), in which is reported the trend ofE as a function of
the amplifier gain, comparedwith the theoretical prediction.
We now discuss the optimality of the measurements

performed on the multiphoton state, in order to extract
the maximum information about the phase ’ codified in
the optical field. This quantity is expressed by the quantum

Fisher information [3,31], defined as Hð’Þ ¼ Tr½�̂’L̂’�,
where L̂’ is the symmetric logarithmic derivative @’�̂

’ ¼
L̂’�̂

’þ�̂’L̂’

2 and �̂’ is the density matrix of the state in which

the phase is codified. The quantum Cramer-Rao bound [3]
quantifies the maximum precision achievable on the esti-
mation of the phase ’ optimized over all possible mea-
surements as �2’ � 1=Hð’Þ. In the high lossy regime
�hn�i � 1, the single-photon amplified states lead to a
quantum Fisher information equal to Hamplð’Þ 	
2 �n�pð1þ p�1Þ�1, to be compared with the single-photon
case, which givesH1 photð’Þ ¼ �p. This result allows us to

investigate the optimality of the counting measurement
strategy. The sensitivity achieved with this scheme, given
by Eq. (1), can be written in the high lossy regime as
S2ampl ¼ ð�2’Þ�1 	 2 �n�pð1þ p�1Þ�1, thus saturating

the Cramer-Rao bound and ensuring the optimality of
this scheme in the high lossy regime.
As a more sophisticated strategy, it is possible to elabo-

rate on an approach which leads to higher visibility of the
detected fringe patterns at the cost of a reduced detection
rate of the signal: the output radiation is measured in
polarization with two linear detectors, for instance, photo-
multipliers. The intensity signals generated by the detec-
tors proportional to the orthogonally polarized number of
photons are compared shot by shot by the orthogonality-
filter (OF) electronic device introduced in Ref. [24]. When
the number of photonsm’, detected in the ~�’ polarization,

exceeds n’? , detected in the ~�’? polarization, over a

FIG. 2 (color online). (a) Logarithm of the enhancement versus
the nonlinear gain g and the transmittivity of the lossy channel �
for a value of losses between the phase shifter and the amplifier
equal to p ¼ 0:5. (b) Trend of E as a function of losses before
amplification 0:15 � p � 0:5 and after amplification 0:05 �
� � 0:2 (g ¼ 4:5). (c) Contour plot of the enhancement as a
function of the logarithm of p and �. The lighter region corre-
sponds to E> 1, the darker one to E< 1. (d) Nonideal case
p � 1: trend of the injection probability critical value for which
E > 1 as a function of the detection efficiency.

FIG. 3. (a) Experimental results of the enhancement E versus
the nonlinear gain for the counting detection strategy.
Continuous line: theoretical prediction for the expected enhance-
ment with � ¼ 3� 10�4, p ¼ 0:15. (b) Experimental results of
the enhancement E versus the signal rate for the OF strategy; the
continuous line reports the theoretical prediction for p ¼ 0:14,
� ¼ 0:005.
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certain adjustable threshold k, i.e., m’ � n’? > k, the

(þ1) outcome is assigned to the event and the state
j�’i is detected. On the contrary, when the condition
n’? �m’ > k is satisfied, the (� 1) outcome is assigned

and the state j�’?i is detected. Finally, an inconclusive
result (0) is obtained when the unbalance between detected
pulses does not exceed the threshold k. As the gain is
increased, the number of transmitted photons �hni be-
comes sufficient to detect all the N repeated trials. In the
high losses regime, at variance with the single-photon case,
all pulses can be exploited to extract information about the
phase ’. The action of the OF is then to select those events
that can be discriminated with higher fidelity, leading to
an increase in the visibility, at the cost of discarding part of
the data.

According to these considerations, the ‘‘detection’’ effi-
ciency of the scheme, i.e., the percentage of detected events,
is given by the average signal �� ¼ RmeanðkÞ filtered by the
OF device. This parameter �� corresponds to the overall
efficiency of the amplification-OF-based detection scheme.
We calculated the phase measurement uncertainty through

the standard definition �’OF ¼ �ROFð’Þj @ROFð’Þ
@’ j�1. The

minimum uncertainty is achieved for ’ ¼ �
2 . The resulting

sensitivity averaged over N trials is thus SOF ¼
V

ffiffiffiffiffiffiffiffiffiffiffiffi

Rmean

p ffiffiffiffi

N
p

, where V is the visibility of the fringe pattern.
This expression shows that the phase fluctuations no longer
depend on the efficiency � of the channel, but only on the
average percentage of detected pulses Rmean.

We have experimentally tested the enhancement ob-
tained by the OF strategy. We report in Fig. 3(b) the
experimental trend of the enhancement as a function of
the signal rate compared with the expected theoretical
trend (p ¼ 0:14, � ¼ 0:005). In the adopted apparatus
the single-photon fringe pattern shows a visibility �50%
due to the generation of more than a single-photon pair by
the first nonlinear crystal adopted as the heralded single-
photon source. This seed visibility value is also responsible
for a reduction of the amplified state visibility and has been
taken into account in the comparison between the two
strategies. By comparing the enhancement obtained
through the counting and the OF-based detection methods,
we can conclude that the first one allows us to achieve a
higher enhancement.

In conclusion, the ability to generate suitable quantum
light probes and quantum detectors is a crucial prerequisite
for the operation of any quantum sensor. The optimal
probes maximizing the sensitivity and performance of the
sensors can be theoretically determined, but the resulting
quantum states are often very complicated, difficult to
generate, and extremely sensitive to losses and noise. We
proposed and realized a simple conceptual strategy to
apply in a lossy scenario that can be engineered with the
existing quantum-optics technology. Our results show that
a large sensitivity improvement can be achieved even in a
high losses condition in which the dominant losses act
after the interaction of the probe with the sample, hence

including all the inefficiencies in the detection of the probe
(spatial and spectral filtering, transmission, efficiency of
the detectors).
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