
PHYSICAL REVIEW A 96, 022322 (2017)

Amending entanglement-breaking channels via intermediate unitary operations
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We report a bulk optics experiment demonstrating the possibility of restoring the entanglement distribution
through noisy quantum channels by inserting a suitable unitary operation (filter) in the middle of the transmission
process. We focus on two relevant classes of single-qubit channels consisting in repeated applications of rotated
phase-damping or rotated amplitude-damping maps, both modeling the combined Hamiltonian and dissipative
dynamics of the polarization state of single photons. Our results show that interposing a unitary filter between
two noisy channels can significantly improve entanglement transmission. This proof-of-principle demonstration
could be generalized to many other physical scenarios where entanglement-breaking communication lines may
be amended by unitary filters.
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I. INTRODUCTION

Real quantum communication channels are typically not
perfect transmission lines, since they usually introduce dif-
ferent kinds of noises given by the intrinsic mechanisms that
transfer information or by external perturbations. Physically,
such channels disturb the transmitted messages by gradually
degrading the information along their structures [1–3] and this
effect may be particularly severe when entangled qubits are
propagated through them. The extreme limit is represented by
entanglement-breaking (EB) channels [4] that are so noisy to
be useless for an entanglement distribution even exploiting
distillation techniques [5], with direct consequences on the
associated classical or quantum capacities [6].

In many practical situations, quantum channels can be rep-
resented as the consecutive application of a given elementary
map � repeated n times, where n is a positive integer. In this
cases, the full channel is given by

�n = � ◦ � ◦ · · · ◦ �︸ ︷︷ ︸
n times

(1)

and the integer n can be interpreted as the effective length
of the transmission line. For example, if the elementary map
� corresponds to the spatial propagation of a quantum state
along a physical medium of length l, then the total length of
the channel is nl. Alternatively, if � models the dissipative
evolution of the system lasting an elementary time interval
τ , then nτ represents the total time duration of the whole
process. In these cases one may ask what is the maximum
entanglement propagation length or, equivalently, what is the
minimum n = k such that �k is EB. Such a number k can be
seen as a sort of noise quantifier for the elementary map �

and corresponds to its entanglement-breaking order originally
defined in [7] and further investigated in [8–10].

In this work we give an experimental proof-of-principle
demonstration that the propagation length can be increased
by placing intermediate unitary operations (filters) between
the elementary maps �. More precisely, we implement
two different examples [built up by exploiting single-qubit
phase-damping (PD) and amplitude-damping (AD) channels,
respectively] of an elementary map � of k = 2 such that

� ◦ � is EB, (2)

while, for a suitable unitary operation F ,

� ◦ F ◦ � is not EB. (3)

In practice, the action of the filterF is to “amend” the otherwise
EB communication line, by properly acting in the middle of
the transmission process. Therefore, the length of the channel
up to which quantum correlations are preserved is increased.
Together with the recent results reported in Ref. [10] in which
dissipative correcting operations have been considered, the
present work represents an experimental demonstration of
such an entanglement recovery technique.

From a theoretical perspective this idea was already
introduced in [7], where it was also shown that for some
maps � (including those considered in the next section) the
entanglement propagation length can be increased from k − 1
to an arbitrary number q of repetitions, i.e., one can have

� ◦ F ◦ � ◦ · · · ◦ F ◦ �︸ ︷︷ ︸
q times

is not EB. (4)

In this work, however, we consider only the case of q = k = 2
iterations represented in Eq. (3) for two main reasons: in the
first place, our main motivation is to present a proof of concept
as simple as possible of this recovery effect and, secondly,
experimental entanglement transmission for many iterations
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q � 2 is quite hard to achieve due to unavoidable technical im-
perfections of the associated large-scale experiments. For these
reasons our method must not be considered as competitive or
superior to standard quantum communication schemes based
on quantum repeaters. Our results are instead complementary
to such techniques: for example, one could use our methods
to increase the distance between two repeaters of a quantum
network or to amend quantum channels in which repeaters
are difficult to implement for technical reasons (e.g., in long
undersea optical fibers).

The paper is organized as follows. In Sec. II we present
the idea and the theoretical model of the two experiments: the
first one based on rotated phase-damping maps and the second
one based on rotated amplitude-damping maps. In Sec. III
we present all the details of the experimental implementation.
In Sec. IV we report and discuss the experimental results.
Eventually, in Sec. V we draw some conclusions.

II. THEORETICAL MODEL OF THE EXPERIMENT

In this section we present the two experimental schemes that
we used to verify the unitary filtering phenomenon compactly
summarized by Eqs. (2) and (3). For both experiments we fo-
cused on single-qubit channels acting on the polarization state
of individual photons. The vertical and horizontal polarizations
of the photon form a basis {|V 〉,|H 〉} of a two-dimensional
Hilbert space. In this basis, a generic quantum state can be
expressed as a 2 × 2 density matrix ρ ∈ C2 such that ρ � 0
and Tr[ρ] = 1.

As real candidates for the elementary map � appearing
in Eq. (2), we considered the rotated phase-damping and the
rotated amplitude-damping maps, respectively given by the
following composition of operations:

�PD = �π/8 ◦ �, (5)

�AD = �π/4 ◦ �, (6)

where �π/8 and �π/4 are unitary rotations defined by

�θ (ρ) = RθρRθ , Rθ =
(

cos(2θ ) − sin(2θ )
− sin(2θ ) − cos(2θ )

)
, (7)

� is the phase-damping channel [11,12] with damping param-
eter p ∈ [0,1],

�(ρ) =
(

1 − p

2

)
ρ + p

2
σzρσz, σz = Rθ=0, (8)

and � is the amplitude-damping channel [11,12] with the
parameter η ∈ [0,1],

�(ρ) =E1ρE
†
1 + E2ρE

†
2, (9)

with E1 = (1 0
0

√
1 − η

) and E2 = (0
√

η

0 0 ). In both cases (� =
�PD and � = �AD), as a potential candidate for the generic
unitary filter appearing in (3) we use

F = �ϕ, (10)

where ϕ is an angle that we are going to optimize and �ϕ is
a unitary operation defined analogously to �θ as in Eq. (7).
Our aim is to experimentally verify that there exist values or
intervals of the damping parameters p or η and of the filter

angle ϕ such that both conditions (2) and (3) are fulfilled,

demonstrating that the unitary filter succeeds in increasing the
entanglement propagation distance.

Before presenting the details of the experimental imple-
mentation, we anticipate here how the previous three maps
(7)–(9) can be realized using standard bulk optics elements
such as beam splitters and phase plates, and how one can
experimentally test whether a given sequence of maps is
entanglement breaking or not. The implementation of the
unitary rotation �ϕ is very simple since it corresponds to
the application of a λ/2 phase plate rotated by an angle
ϕ around the propagation axis of the photon. The phase-
damping channel (8) can also be implemented quite easily
as a probabilistic switch between the identity operation I and
the map σz. The application of the amplitude-damping channel
(9) to a polarization qubit is instead less straightforward but
can still be simulated with a suitable interferometric scheme as
explained in the next section. Finally, we recall that, in order
to test whether a channel is entanglement breaking or not, it is
sufficient to apply it to a subsystem of a maximally entangled
state and check the separability of the output state [4]:

� is EB ⇐⇒ (� ⊗ I )|�〉sa〈�| is separable, (11)

where I is the identity map on an arbitrary ancillary system
a and |�〉sa is a maximally entangled state of the bipartite
system composed by the considered system s and a.

III. EXPERIMENTAL IMPLEMENTATION

Our experimental scheme adopts a Sagnac interferometric
source of polarization-entangled photons [13] in a Bell state
|�〉sa = 1√

2
(|0〉s |1〉a + eiφ |1〉s |0〉a), |0〉 ≡ |H 〉 (|1〉 ≡ |V 〉)

being the horizontal (vertical) polarization. The photons are
generated in two indistinguishable type-II parametric down-
conversion processes inside a periodically poled potassium
titanyl phosphate (PPKTP) nonlinear crystal. Here the photons
belonging to a continuous wave laser of 405 nm are converted
into twin photons of 810 nm at a rate of 60 000 pairs/s and
heralded efficiency of 16% revealed by two synchronized
avalanche photodetectors (APDs). The high purity of the
generated state was measured, giving a fidelity of Fexp =
0.980 ± 0.016 to |�〉sa [14] and a concurrence of Cexp =
0.973 ± 0.004 [15]. In order to take into account the imperfect
purity of the input entangled state, we can model it as a
Werner state ρW = 4F−1

3 ρsa + 1−F
3 Is ⊗ Ia [6,16], where Ix

is the identity operator associated with subsystem x.
In order to test condition (11) in the laboratory, the s photon

(i.e., the photon that embodies the system s) is injected in a bulk
optics setup that implements � = � ◦ � or �′ = � ◦ F ◦ �,
while the a photon (i.e., the ancillary system) propagates in
free space. The bipartite output state ρout

sa is measured by a
hypercomplete tomography setup [17] (see Fig. 1). Then the
s and a photons are coupled into single-mode fibers (SMFs)
directly connected to an APD. The setup allows to measure
the degree of entanglement remaining after the action of each
implemented map.

A. Rotating phase-damping channel

To simulate each � channel [Eq. (8)], two operations are
needed, I and σz. They are simply implemented by the absence
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FIG. 1. Scheme of the experimental setup. A source of polariza-
tion entangled qubits sends the a photon directly to the tomography
stage, while the s photon is transmitted by a SMF to the simulation
of � = � ◦ � or �′ = � ◦ F ◦ � and then measured in the same
temporally synchronized bipartite tomography. The maps � = �PD

or � = �AD are represented by the black boxes, while F = �ϕ is
represented by the transparent-gray box enclosing a half-wave plate
HWP(ϕ). Finally, we specify that � (�′) corresponds to the absence
(presence) of HWP(ϕ).

or presence of a half-wave plate (HWP) fixed at 0◦ in the optical
path of the photon, respectively. To simulate �θ another HWP
is permanently placed after �, but with a rotation degree of
freedom in the angle θ [as shown in Fig. 2(a)] [6,18].

Since both �θ plates are synchronized in their rotation
angle, there are only four combinations of Pauli operations;
when the first �PD is applying I, the second �PD can apply I
or σz; when the first �PD is applying σz, the second �PD can
apply I or σz. Then the statistical mixture between I and σz

is obtained by extracting a fraction PII = (1 − p

2 )2 of coinci-
dences from the I + I tomography, a fraction PIσz

= (1 − p

2 )p

2
of coincidences from the I + σz and σz + I tomographies, and
a fraction Pσzσz

= (p

2 )2 from the σz + σz tomography. Once the
tomography registry fractions are combined, the new registry
will be equivalent to a tomography of the state under the action
of �PD = �PD ◦ �PD.

B. Rotating amplitude-damping channel

To simulate each � channel, we use a displaced Sagnac
interferometer (SI), opened and closed by a single polarizing
beam splitter (PBS) [as shown in Fig. 2(b)]. The parallel trajec-
tories of |V 〉 and |H 〉 projections inside the SI are temporally
compensated and go in the clockwise and counterclockwise
directions, respectively. Both trajectories are intercepted by

FIG. 2. Single-channel modules. (a) Plot of �PD: The unrotated
yellow plate HWP(0) constitutes the PD channel �, since I is applied
when it is absent or σz when it is present. (b) Plot of �AD: The
SI and MZI constitute the AD channel �, transforming the vertical
polarization into horizontal by a rotation of HWP(α). In both (a) and
(b), the rotating red plate HWP(θ ) represents �θ .

independent HWPs: a rotating one, HWP(α), for |V 〉 and
another unrotated one, HWP(0), for |H 〉. The rotation angle
α is related to the damping parameter η by the expression
α(η) = arccos(−√

1−η)
2 [6,10].

After the SI there is an unbalanced Mach-Zehnder inter-
ferometer (MZI) that allows to couple in the same trajectory
the damped and undamped polarizations as they pass through
a beam splitter (BS). The temporal difference between the
MZI arms is set to a value larger than the coherence length
of the photons in order to simulate random-phase fluctuations
that destroy quantum interferences at its output. The action
of �AD = �AD ◦ �AD is then obtained by selecting the same
damping η in both �, while both HWPs corresponding to �ϕ

rotate in a synchronous way.

C. Filtering

The protocol first requires us to fix the damping parameter p

for �PD or η for �AD to scan the channel in the rotation angle
θ and verify the location of periodic EB regions. It results
that these regions are located around θPD = π

8 ± nπ
4 for the

(�PD,s ⊗ Ia)(ρsa) experiment and around θAP = π
4 ± nπ

2 for
the (�AD,s ⊗ Ia)(ρsa) experiment, in both cases with n ∈ N.
Once this condition is experimentally certified, one proceeds
to fix the angle θ = θPD or θ = θAD. Then the operation of F is
studied by scanning the rotation ϕ of an extra HWP (as shown
in Fig. 1). As a consequence, either �′

PD = �PD ◦ �ϕ ◦ �PD

or �′
AD = �AD ◦ �ϕ ◦ �AD will no longer be EB in a region

where �PD and �AD are EB.

IV. RESULTS

In Fig. 3 we report the experimental results for the channels
�PD and �′

PD acting over the s photon of a pair of entangled
photons, with the damping parameter set to the value p = 0.65.
Figure 3(a) shows the EB behavior of �PD around θPD = ±π

8
as predicted by the simulated model, while Fig. 3(b) shows an
entanglement revival of �′

PD for ϕ = ±π
8 . Similarly, in Fig. 4

we report the results of �AD and �′
AD channels acting over

the s photon from a pair of entangled photons, having set the
damping parameter to the value η = 0.66 ± 0.017. Figure 4(a)
shows the EB behavior of �AD around θAD = ±π

8 as predicted
by the simulated model, while Fig. 4(b) shows an entanglement
revival of �′

AD for ϕ = π
8 .

The experimental data were obtained by averaging and
calculating the standard deviation over five values per point.
The blue lines were calculated by considering perfect input
state and optical conditions. The simulated shaded green areas
correspond to the regions of all possible experimental results
within one standard deviation of Fexp = 0.980 ± 0.016 for
�PD and �′

PD and also consider the error propagation of 0.5◦
of uncertainty in θ for �AD and �′

AD. This difference in the
data analysis between PD and AD channels originates from
the negligible error contribution of 0.5◦ of uncertainty in PD
channels. All Cexp = 0 values have error bars within the size
of the point.

The simulated data considered two scenarios: one with
perfect optical elements (POEs) and a maximally pure en-
tangled input state, and another with realistic optical elements
(ROEs), a nonmaximally pure entangled input state, and error
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FIG. 3. Concurrence vs PD mapping for p = 0.65. Red points
represent the experimental data. Blue lines represent the simulated
data for perfect optical elements and a pure entangled state with
F = 1. Green shaded areas represent the regions of simulated data
for realistic optical elements and a mixed entangled state within one
standard deviation of the fidelity Fexp = 0.980 ± 0.016. (a) Plot of
�PD, obtained by rotating θ , with EB behavior around θ = ± π

8 .
(b) Plot of �′

PD, obtained by rotating ϕ, with a revival of entanglement
around ϕ = ± π

8 , while θ is fixed at π

8 .

propagation. The differences between these two cases are
described in Table I.

In both PD (Fig. 3) and AD (Fig. 4) cases there is a
good agreement between experimental and simulated data.

TABLE I. Optical parameters and state fidelities. The acronyms
TH and TV represent the transmissivities in the horizontal and vertical
polarizations, respectively; RH and RV represent the reflectivities in
the horizontal and vertical polarizations, respectively.

Parameter POE Average ROE

Fidelity (F) 1 0.980 ± 0.016
THBS 0.5 0.507 ± 0.016
RHBS 0.5 0.407 ± 0.011
TVBS 0.5 0.495 ± 0.018
RVBS 0.5 0.410 ± 0.001
THPBS 1 0.965 ± 0.001
RHPBS 0 0.008 ± 0.004
TVPBS 0 0.024 ± 0.014
RVPBS 1 0.928 ± 0.035

FIG. 4. Concurrence vs AD mapping for η = 0.66. Red points
represent the experimental data. Blue lines represent the simulated
data for perfect optical elements and a pure entangled state with
F = 1. Green shaded areas represent the regions of simulated data
for realistic optical elements and a mixed entangled state within
one standard deviation of the fidelity Fexpt = 0.980 ± 0.016 and the
propagated error of the damping η = 0.66 ± 0.017. (a) Plot of �AD,
obtained by rotating θ , with EB behavior around θ = ± π

4 . (b) Plot of
�′

AD, obtained by rotating ϕ, with a revival of entanglement around
ϕ = ± π

4 , while θ is fixed at π

4 .

The discrepancies existing between �PD and �′
PD and their

simulations could be attributed to the postprocessing genera-
tion of the channel, since their action has been simulated by
combining I and σz operations with unstable photon counts
during long-time scans varying θ and ϕ rotation angles. On
the other hand, discrepancies between �AD and �′

AD and their
simulations are strongly related to the difficulty of coupling
the 16 possible spatial modes within a unique SMF at the end
of the entire channel.

Our results constitute an experimental validation of the
entanglement recovery effect summarized by Eqs. (2) and (3).
As discussed in the Introduction, the iteration of the same
filtering method beyond two repetitions (q > 2) of the map
� is theoretically possible, however, the practical implemen-
tations present technical difficulties depending on the kind
of channels under study. In the cases considered in this
work, for q-filtered �PD channels, their concatenation must
be temporally synchronized to correctly apply 2q possible
operations. For q-filtered �AD channels, all the 4q spatial
modes must be correctly collected by a single SMF. As a
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consequence, a large number of filtered iterations represents a
challenging experimental task beyond the aim of this work.

V. CONCLUSION

We have given an experimental proof for a method aiming at
increasing the entanglement transmission distance, applicable
to communication lines decomposable into elementary maps.
The technique consists in placing appropriate unitary opera-
tions between the elementary steps of the channel, allowing
one to restore the entanglement transmissivity of an initially
entanglement-breaking communication line.

We implemented different single-qubit channels acting on
the polarization of single photons combining standard bulk
optics elements: rotated phase plates, beam splitters and
photodetectors. We applied such channels to a subsystem
of a maximally entangled state and computed the remaining

fraction of entanglement after performing a two-photon state
tomography. We measured clear revivals of the output entan-
glement whenever a unitary filter, consisting of a phase plate
with appropriate rotation angle, was placed in the middle of the
transmission process. Our results could be extended to more
general physical scenarios involving different single-qubit
operations [7], continuous and nonunitary channels [10], or
amendable Gaussian maps [8].
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