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Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro, 5, I-00185 Roma, Italy

Andrea Crespi and Roberto Osellame
Istituto di Fotonica e Nanotecnologie–CNR and Dipartimento di Fisica–Politecnico di Milano,

Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
(Received 25 November 2014; published 30 January 2015)

An all-optical scheme for simulating non-Markovian evolution of a quantum system is proposed. It uses only
linear optics elements and by controlling the system parameters allows one to control the presence or absence
of information backflow from the environment. A sufficient and necessary condition for the non-Markovianity
of our channel based on Gaussian inputs is proved. Various criteria for detecting non-Markovianity are also
investigated by checking the dynamical evolution of the channel.
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I. INTRODUCTION

In the absence of memory effects in the system environ-
ment, the dynamics of open quantum systems is typically
characterized in terms of master equations in the so-called
Lindblad form [1]. This corresponds to having a continuous
Markovian process which, while being an extremely useful
approximation, does not necessarily hold at all time scales.
In recent years a huge effort has been put forward in order
to characterize non-Markovian behaviors in the dynamics of
quantum systems [2–14]. Understanding these phenomena is
a fundamental question with potential applications in the en-
gineering of reservoirs for quantum computation and quantum
information processing [15–19]. Most of the works proposed
so far have focused on developing tools and criteria that
would permit one to certify the presence of a non-Markovian
behavior [6–13], relying on certain mathematical properties of
this type of dynamical evolution [14,20–22]. Recently a couple
of works in simulating and testing non-Markovian dynamics
in optical systems have been reported [23–25].

An alternative approach to the study of non-Markovianity
has been proposed in a series of papers based on collisional
models [26–33]. Here the continuous time evolution is re-
placed by a stroboscopic process formed by a series of discrete
steps where the system of interest couples with different
components of a many-body quantum system that simulates
an extended environment. Despite being extremely simplified,
such models allow one to capture the main effects which are
responsible for the arising of the non-Markovian character
in the dynamics, namely, the correlations in the environment
input state, its internal dynamics, and the interaction between
the latter and the system. In particular Refs. [26,27] presented
a general scheme where the non-Markovianity is simulated
by allowing collisional interactions also among the various
components of the extended many-body quantum environ-
ment. By properly tuning such intraenvironment collisions
one can then pass from a purely Markovian dynamics to a
strong non-Markovian regime where the system environment
reduces to a single, finite-dimensional quantum system which

coherently exchange information with the system of interest
via conventional Rabi oscillations. As a matter of fact such a
theoretical scheme can be perceived as a quantum simulator
that enables one to reproduce (in a stroboscopic fashion) the
(not necessarily Markovian) complex dynamics of an open
quantum system.

The aim of this work is to propose an implementation
of such a theoretical model using linear quantum optics.
Specifically in our scheme the system of interest as well as the
environmental degree of freedom are all described in terms
of frequency-degenerate quantum optical modes while their
interactions are represented as a complex scattering process
mediated by a series of properly arranged beam splitters (BSs).
The overall arrangement is very much similar to the one used
to test interaction-free measurement [34]. The main difference
is that in our case thermal sources have to be injected into the
auxiliary ports of the setup. In this scenario we explicitly solve
the stroboscopic dynamics of the system and study the arising
of non-Markovianity as a function of the setup parameters
(e.g., the transmissivities of the BSs, the temperature of the
environmental modes, the relative phase accumulated by the
signals between two consecutive collisions). Hence we test
the non-Markovian witnesses of Refs. [6–11] and compare
their efficiencies.

The paper is organized as follows. We start in Sec. II
by describing the details of our proposal. In Sec. III we
present a sufficient and necessary characterization of the
non-Markovianity of stroboscopic evolution. In Sec. IV instead
we analyze how different non-Markovianity witnesses perform
in our model. The conclusions are drawn finally.

II. SCHEME

Our scheme is based on the theoretical model discussed in
Refs. [26,27] where the non-Markovian dynamical evolution
of a quantum system S is stroboscopically represented via a
series of (coherent or incoherent) collisions with a collection
of environmental ancillary quantum systems. Accordingly
dissipation and decoherence are induced at each collision by
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allowing part of the “information” contained in S to leak
into the environment. However, at variance with standard
memoryless collisional models [29–32], in the scheme of
Refs. [26,27] the bath is endowed with an effective memory
by introducing extra interancillary collisions between two
consecutive system-ancilla interactions. By controlling the
intensity of such interancillary collisional events, the model
allows one to interpolate between a fully Markovian dynamics
(where no backflow of information from the environment to S

is allowed) and the continuous interaction of the system with
a single ancilla, i.e., a strongly non-Markovian process.

The collision model can be implemented in an all-optical
system where the system and the ancillary environments
are represented by independent (frequency-degenerate) modes
propagating along different optical paths, while the collisional
events among them are simulated by means of BSs. We recall
that a BS transfers the input modes, say a1 and a2, in the
following way: (

aout
1

aout
2

)
=

(
r t

t −r

)(
a1

a2

)
, (1)

where r and t are the reflectivity and transmissivity of the BS
satisfying r2 + t2 = 1 (see the solid-line box of Fig. 1). The
mixture of two input modes on the BS is an effective simulation
of the information exchange.

The setup is composed by an array of BSs described in
Fig. 1. An optical incoming signal (representing the system
mode) prepared in state ρS enters from the port S and interacts
with the 0th environmental mode (entering from port 0),
prepared in a given state ρ0 which will be specified later,
at the first BS1. After this interaction, a part of the information
will be reflected back to the system S, while the other part is
transmitted into the environment. However, as is clear from
Fig. 1, the lost information from S has a chance of reentering
the system due to the presence of the BS2 associated with
the first environmental mode (entering the system in a given

FIG. 1. (Color online) Schematic of the setup. The BSs in red
represent collisions between the system of interest (mode S) and
one of the environments (modes 0,1,2, . . . ,L). The BSs in yellow
instead describe intraenvironment collisions: their reflectivities r2

define the backflow of information into the system (for r2 = 0 the
model becomes strictly Markovian). An auxiliary mode A, which is
entangled with mode S, is introduced to detect the non-Markovianity
of the stroboscopic evolution as discussed in Sec. IV. The solid-line
box is a description of the interaction of two input modes at the BS.
The dashed-line box denotes the building block of our stroboscopic
model. The prime denotes the output mode.

state ρ1 from port 1) and of the second BS1. In between two
neighboring BS1s, there is a phase shifter which introduces
a phase difference φ between the system and the memory.
As a consequence, we can obtain the dynamical evolution of
ρS by concatenating such processes as a building block and
introducing more environmental modes.

To solve the stroboscopic evolution of ρS one needs
to compute the scattering matrix S of the channel. For a
channel with environmental modes labeled by 0,1, . . . ,L, S
is an (L + 2)-dimensional matrix. It can be represented as
S(L) = ∏L

j=1 Sj where Sj are the following:

Sj�1 =

⎛⎜⎜⎜⎝
r1e

iφ t1e
iφ 0 0 0

t1r2 −r1r2 0 t2 0
0 0 Ij−1 0 0

t1t2 −r1t2 0 −r2 0
0 0 0 0 IL−j

⎞⎟⎟⎟⎠ , (2)

with Im being an m × m identity and r1 (t1) and r2 (t2)
being the reflectivities (transmissivities) of BS1 and BS2,
respectively. The parameter r1 measures the intensity of the
interaction between the system and the environment, while r2

is the memory parameter of the channel as it measures the
backflow of information. In particular, for r2 = 0 no backflow
is allowed and the channel becomes perfectly Markovian.

The dynamical evolution of the system plus the environment
can then be solved using the characteristic function formal-
ism [35]. The multimode (symmetrically ordered) character-
istic function of the input modes of the joint system is given
by

χ in
J (�ν) = Tr[D(�ν)ρ in

J ], (3)

where ρ in
J is the joint state of all input modes and �ν =

(νS,ν0,ν1, . . . ,νL) is a complex vector (the subscripts S and
i = 0,1, . . . ,L denoting respectively the system and the ith
environmental mode). Accordingly, the joint characteristic
function of the output modes is given by

χ
out,L
J (�ν) = χ in

J [S−1(L)�ν], (4)

from which the characteristic function χ
out,L
S (νS) associated

with the output of the system mode S can be obtained by
simply setting �ν = (νS,0, . . . ,0), i.e.,

χ
out,L
S (νS) = χ

out,L
J (νS,0, . . . ,0) . (5)

Assuming then that the environmental modes are all
initialized in the same thermal state, the above expression
yields the following input-output relation for the system
mode S:

χ in
S (νS) �→ χ

out,L
S (νS)

= exp
[(

nT + 1
2

)
(|cL|2 − 1)|νS |2

]
χ in(c∗

LνS), (6)

where χ in(νS) is the characteristic function of input state ρ in
S

of S, nT is the thermal photon number of the environmental
modes, and where finally cL is a shorthand notation to indicate
the matrix element in the first row and first column of S(L),
i.e., cL = SS,S(L). The latter is the fundamental parameter of
the model as it encodes the functional dependence upon the
“temporal” index L.
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As detailed in the Appendix, a closed expression for
cL is obtained by explicitly solving the scattering process,
yielding

cL = (λL
+ − λL

−)r1 + λ+λL
− − λL

+λ−
λ+ − λ−

, (7)

with

λ± = 1
2 [(r1e

iφ − r1r2) ±
√

(r1eiφ − r1r2)2 + 4r2eiφ]. (8)

Equation (6) describes a thermal bosonic Gaussian channel
EN

η [36] associated with a thermal bath with mean photon
number nT and with effective transmissivity η = |cL|2, i.e.,

ρ in
S �−→ ρ

out,L
S = EL

(
ρ in

S

)
:= EnT

|cL|2
(
ρ in

S

)
. (9)

For example, if the input state of S is a coherent state ρ in
S =

|α〉〈α|, Eq. (6) predicts that the output state will be a displaced
thermal state. In particular, if the environmental modes are
initialized in the vacuum (i.e., nT = 0), the output state ρ

out,L
S

is still a coherent state |c∗
Lα〉. We also notice that when the

temperature of the environment is zero (i.e., nT = 0 again)
and the input state of the mode S spans the vector subspace
with at most one photon, the channel (9) can be described as a
qubit amplitude-damping channel A|cL|2 [37] characterized by
the following Kraus operators:

E0 =
(

1 0
0 cL

)
, E1 =

(
0

√
1 − |cL|2

0 0

)
. (10)

III. CHARACTERIZATION OF NON-MARKOVIANITY

A. Sufficient and necessary condition for non-Markovianity

In this section, we will show a sufficient and necessary
condition of the non-Markovianity of our channel by adopting
the divisibility condition analyzed in Refs. [8,9,14]. The idea
is as follows. The map EL which describes the evolved state of
S after L collisional steps [see Eq. (9)], can be formally split
as

EL = 	L−1→L ◦ EL−1, (11)

where 	L−1→L is an intermediate process that maps the output
state after the (L − 1)th step into the final state ρ

out,L
S and

where “◦” represents the composition of superoperators. By
construction both EL and EL−1 are complete positive (CP) and
trace preserving [37], i.e., they describe a proper dynamical
evolution.

On the other hand, there is no guarantee in general that
the complete positivity condition should hold for 	L−1→L. As
discussed in Refs. [8,9,14] this fact defines the divisibility
property of the dynamical evolution of the system, which
is an essential prerequisite for Markovianity. In particular if
	L−1→L is non-CP for some value of L then we say that the
process is nondivisible, and hence non-Markovian. Vice versa,
if 	L−1→L is CP for all L then the dynamics is divisible, and
hence Markovian (at least in a generalized sense).

In our case an explicit expression for 	L−1→L can be
obtained by using Eq. (6) to show that, for arbitrary L, the

inverse of the channel EL is given by

χout,L(νS) �→ χ in(νS) = E−1
L [χout(νS)]

= χout,L

(
νS

c∗
L

)
exp

[(
nT + 1

2

)
(1 − |cL|2)

|νS |2
|cL|2

]
.

(12)

Accordingly we can write

	L−1→L[χ in(νS)] = EL ◦ E−1
L−1[χ in(νS)]

= χ in(c∗
r νS) exp

[(
nT + 1

2

)
(|cr |2 − 1)|νS |2

]
,

(13)

where cr = cL/cL−1.
In order to check whether or not 	L−1→L is completely

positive and trace preserving, we adopt the criterion proposed
in Ref. [38]. By performing the transformations

νS = 1√
2

(−y − ix),

ν∗
S = 1√

2
(−y + ix), (14)

|νS |2 = 1

2
(x2 + y2),

we can rewrite Eq. (13) as the following:

	L−1→L[χ in(z)] = χ in(K · z) exp
(− 1

2zT · α · z
)
, (15)

where z = [x,y]T is a column vector of R2 and

K =
[

Re(cr ) Im(cr )
−Im(cr ) Re(cr )

]
,

α = (
nT + 1

2

)
(1 − |cr |2)

[
1 0
0 1

]
, (16)

are 2 × 2 real matrices.
If the matrix defined as M = 2α − σy + KT σyK is non-

negative definite then 	L−1→L is CP and thus the channel
is Markovian. It is easy to compute the eigenvalues of M as
follows:

λ1 = 2(nT + 1)(1 − |cr |2),
(17)

λ2 = 2nT (1 − |cr |2).

Thus we can conclude that the process is Markovian if and
only if |cr | � 1, i.e.,

|cL| � |cL−1|, ∀ L � 1, ⇐⇒ Markovianity. (18)

We note that this criterion is independent of the environmental
temperature nT and of the input state.

B. Characterization of non-Markovianity of the channel

In this section we adopt the criterion Eq. (18) to characterize
the divisibility of the process. In Fig. 2 we show the
stroboscopic evolution of |cL| with different reflectivities of
BS1 and BS2 and for different values of the phase shift φ. For a
small r2, which means a weak feedback from the environment,
the monotonic decrease of |cL| implies the Markovianity of
the channel. For a large r2 instead the backflow of information
from the environmental modes into the system mode is strong:
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FIG. 2. (Color online) (a) Stroboscopic and (b) coarse-grained
evolutions of |cL| for r1 = 0.1 and different values of the phase
shift φ. For r2 = 0.01 (black line, weak memory), |cL| decreases
monotonically. For r2 = 0.99 (red and green lines, strong memory),
there is an evident oscillation of |cL|. A nonzero phase (green lines)
will modify the amplitude of the oscillation. The coarse-grained
evolution (blue line) with grain size � = 15 also reveals the non-
Markovian character of the channel. (c) Stroboscopic evolution of
cL for φ = π in the limit of r1,r2 → 1. In this limiting case the
stroboscopic evolution exhibits a kind of evolution under continuous
limit.

in this case oscillations of |cL| are evident, testifying the
non-Markovian character of the evolution.

It is interesting to investigate the coarse-grained evolu-
tion of |cL|. We define the averaged value of |cL| in the
following,

|cn| = 1

�

n�∑
k=(n−1)�

|ck|, (19)

where n = 1,2, . . . ,L/� and � is the size of the grain.
In Fig. 2(b) we show the coarse-grained evolution. The
non-Markovianity of the channel still holds because of the
oscillations of |cn|. The existence of non-Markovianity in the
coarse-grained evolution reveals the possibility of a survival
of non-Markovianity of our channel in the continuous limit. In
fact, we can obtain a kind of continuous-limit evolution in the
case of φ = π and r1,r2 → 1 without doing the coarse-grained
computation; see Fig. 2(c).

In Fig. 3 we show the boundaries between the non-
Markovian and Markovian regions for different φ ∈ [0,π ] in
r1-r2 space [the boundary for φ ∈ (π,2π ] is the same as that
of the (2π − φ) case]. We can see that for r2 = 0 the channel
is always Markovian regardless of the values of r1 and φ,
because there is no backflow information allowed. Although,
in general, for a fixed φ the boundary is not a simple function
of r1 and r2, we can obtain the analytical expressions for the
boundaries for two specific cases φ = 0 and π . For φ = 0,
the boundary is given by r2 = 2r1/(1 + r1) and for φ = π the
boundary is given by r1 = 2

√
r2/(1 + r2).
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FIG. 3. (Color online) Boundaries between non-Markovian and
Markovian regions for different φ ∈ [0,π ] in r1-r2 space. Each curve,
corresponding to a fixed φ, separates the space into two parts; the
upper part is the non-Markovian region and the lower part is the
Markovian region. The analytical expression for the boundary φ = 0
is r2 = 2r1/(1 + r1) and for φ = π it is r1 = 2

√
r2/(1 + r2).

In Fig. 4 we show the dependence of non-Markovianity on
φ in φ-r2 space. We see that the (non-)Markovian region is
symmetric about φ = π .

IV. WITNESSING NON-MARKOVIANITY
OF THE CHANNEL

Several witnesses of non-Markovianity have been devel-
oped in recent years. Even though they are typically identified
under the name of “measures” of non-Markovianity, they
do not gauge the strength of the non-Markovian character
of a dynamical evolution in an operational sense. Still such
witnesses are useful theoretical tools that provide sufficient
conditions that can be used to certify the presence of non-
Markovianity in the physics of the problem. In the following
we study a few of them: specifically the entanglement criterion
introduced by Rivas et al. [8], the trace-distance criterion
introduced by Breuer et al. [6,7], and the relative entropy
criterion introduced by Chruściński and Kossakowski [10,11].

φ/π

r 2

0 0.4 0.8 1.2 1.6 2
0

0.2

0.4

0.6

0.8

1

FIG. 4. (Color online) Dependence of non-Markovianity on φ.
The reflectivity of BS1 is r1 = 0.5. The red is the non-Markovian
regime and the yellow is the Markovian regime.
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These criteria, except for the qubit case mapping discussed in
Sec. IV A 1, are analyzed by fixing φ = 0 for simplicity.

A. Witnessing non-Markovianity with entanglement

In this section we employ the idea proposed in Ref. [8]
to check the non-Markovianity of our stroboscopic evolution.
Accordingly the system S is initially prepared in an entangled
state with an isolated ancilla A, and then subject to the channel:
if the entanglement is not strictly monotonically decreasing
during the evolution then we can say that the channel is
non-Markovian, the opposite being not necessarily true, i.e.,
having entanglement which is monotonically decreasing does
not necessarily correspond to having a Markovian evolution.

Due to the Gaussian character of the mapping Eq. (9), we
find it convenient to consider a two-mode squeezed vacuum
(TMSV) |TMSV(ξ )〉SA as the input entangled probing state
(see Fig. 1). We recall that the vector |TMSV(ξ )〉SA can be
expressed as S(ξ )|0a0b〉 where S(ξ ) is the two-mode squeezed
operator

S(ξ ) = exp
(

1
2ξ ∗ab − 1

2ξa†b†
)

, (20)

with a and b being the annihilation operators of the S and
A modes, respectively, and with ξ = reiθ being the squeezing
parameter (without loss of generality we set θ = 0). Following
the derivation of the previous section we can then express the
output characteristic function of A and S as

χ
out,L
AS (νA,νS) = exp

[
− |νA|2 + |cL|2|νS |2

2
cosh ξ

− c∗
LνAνS + cLν∗

Aν∗
S

2
sinh ξ

− (2nT + 1)(1 − |cL|2)|νS |2
2

]
. (21)

This is a Gaussian state with covariance matrix

V = 1

2

(
B1 B3

BT
3 B2

)
, (22)

where B1 = cosh ξI2, B2 = [(1 − |cL|2)(2nT + 1) +
|cL|2 cosh ξ ]I2, and B3 = −cL sinh ξσ z (σ z is the Pauli
matrix). We notice that the Gaussianity of the output system
state is preserved after tracing out the ancilla mode. Its
entanglement can hence be faithfully measured by the
logarithmic negativity [39]

EN = max {− ln 2μ,0}, (23)

μ =
√

� −
√

�2 − 4 det [V ]

2
, (24)

where � = det [B1/2] + det [B2/2] − 2 det [B3/2].
We note that the squeezing parameter ξ , which parametrizes

the entanglement of the testing TMSV state, does not affect
the existence of the oscillation of |cL| during the stroboscopic
evolution; it affects only the amplitude of the oscillation.
A larger value of ξ means a more entangled TMSV state
and will lead to a more pronounced oscillation, if it exists.
Therefore we can use in principle any nonzero value of ξ to
witness non-Markovianity. In Fig. 5 the entanglement criterion
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FIG. 5. (Color online) The non-Markovian region detected by the
criterion based on entanglement revival [8] in the nT -r2 plane. Each
curve, corresponding to r1 = 0.5, 0.7, and 0.9, separates the plane
into two parts. The squeezing parameter of the testing TMSV state
is ξ = 1, although a different value of ξ does not affect the results.
The non-Markovian region is above this curve: for this points out
in fact that the quantity Eq. (23) is not monotonically decreasing
with L. Below the curve the method instead fails to identify the
non-Markovian character of the process [the quantity Eq. (23) being
monotonic in L]. The flat part of each curve is exactly the same as the
boundary predicted by Eq. (18). The inset shows the dependence
of the threshold temperature nc

T , above which the entanglement
revival criterion is less valid to detect non-Markovianity, on the
reflectivity r1.

is tested for the case of thermal environments (nT � 0) with
different r1, by looking at the functional dependence of (23)
with respect to the temporal parameter L. We see that as
the environment temperature increases above a threshold the
region where the criterion based on entanglement revival can
be used to certify the presence of non-Markovianity shrinks
(the thermal noise being too strong to maintain entanglement
in the system). The dependence of the threshold temperature
on r1 is nc

T = r2
1 /(1 − r2

1 ), as shown in the inset of Fig. 5. For
r1 = 1 the threshold temperature is infinite because the system
completely decouples from the environments. For r1 = 0 the
threshold temperature is zero, which means that the criterion
is valionly in the case of a vacuum environment.

1. Witnessing non-Markovianity of the qubit channel

As discussed at the end of Sec. II, the channel EL reduces
to the qubit amplitude-damping channel A|cL|2 in the case of
nT = 0 and when the input states of the model are restricted to
superpositions of Fock states involving no more than a single
photon.

The non-Markovianity of such mapping can also be studied
via the entanglement criterion proposed in Ref. [8]. In this
case we can suppose that we have a maximally entangled
state between the qubit input system and an external qubit
ancilla (mode A), e.g., a state of the form |ψ〉SA = (|0S1A〉 +
|1S0A〉)/√2. The evolved reduced density matrix of system
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FIG. 6. (Color online) Entanglement (concurrence) stroboscopic
evolution with different φ for the qubit case. The parameters are
chosen as r1 = 0.5 and r2 = 0.4.

and ancilla becomes hence

ρ
out,L
AS = 1

2

⎛⎜⎝1 − |cL|2 0 0 0
0 |cL|2 c∗

L 0
0 cL 1 0
0 0 0 0

⎞⎟⎠ , (25)

which is nothing but the Choi-Jamiolkoswki state of the
transformation [40]. Its entanglement can then be measured by
the concurrence [41]. After a simple calculation one obtains

EC

(
ρ

out,L
AS

) = |cL|. (26)

The monotonicity of entanglement during the evolution there-
fore coincides with the monotonicity of |cL|. Accordingly,
at variance with the Gaussian channel analysis of the previ-
ous section, the cases under which the entanglement-based
criterion is able to detect the presence of non-Markovianity
coincide with those associated with Eq. (18).

The entanglement’s stroboscopic evolution with different
φ is shown in Fig. 6. We see that, for the given parameters,
the channel, at first in a non-Markovian region, enters into
a Markovian one (φ = π/2) and then returns to a non-
Markovian condition.

B. Witnessing non-Markovianity with Gaussian fidelity

In Ref. [6] the authors proposed to use the distance between
two distinct input states to measure the non-Markovianity
of a channel. In what follows we adopt a variant of this
criterion proposed in Ref. [7] which is well suited to study
the evolution of Gaussian input states. The basic idea is the
following: Consider two different states, say ρ1 and ρ2; if
the channel is Markovian then the fidelity between these two
states is monotonically increasing in the time evolution; if the
monotonic increasing of fidelity is broken, then the channel is
non-Markovian.

We recall that for two single-mode Gaussian states ρ1 and
ρ2 the fidelity can be calculated as follows [42,43]:

F (ρ1,ρ2) = 2√
� + δ − √

δ
e−(1/2)dT (V1+V2)−1d, (27)

where V1 and V2 are the covariance matrix of ρ1 and ρ2, respec-
tively. � = 4 det [V1 + V2], δ = (4 det [V1] − 1)(4 det [V2] −
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FIG. 7. (Color online) Non-Markovian regions detected by the
fidelity [6,7] and relative entropy [10,11] of two different squeezed
vacuum states in the nT -r2 plane. The boundaries detected by these
two criteria are exactly the same. The parameters are chosen as
(a) r1 = 0, (b) r1 = 0.3, (c) r1 = 0.6, (d) r1 = 0.9, and φ = 0.
The squeezing parameters of the two input states are ξ1 = 1 and
ξ2 = 0.5, respectively. The red and yellow regions are non-Markovian
and Markovian regions, respectively. The non-Markovian region
coincides with that predicted by Eq. (18) (dashed line).

1), and d = x̄2 − x̄1 with x̄i = [〈qi〉,〈pi〉]T . Figure 7 shows the
results of the non-Markovian detection with squeezed vacuum
states. The squeezing parameters of the input states are ξ1 = 1
and ξ2 = 0.5 (other squeezing parameters will give the same
result). Note that for r1 = 0 the Markovian region appears only
for r2 = 0. Compared with Fig. 4 it can be seen that by using the
fidelity we can detect larger non-Markovian regions; moreover,
the boundary is independent of environment temperature nT .
The non-Markovian region in Fig. 7 coincides with that
predicted by Eq. (18). We also note that, by choosing two
coherent states as probes, the same results can be obtained.

C. Witnessing non-Markovianity with relative entropy

As a final criterion we used the relative entropy criterion of
Refs. [10,11]. Although the relative entropy is not a metric, it is
acceptable as a measure of distinguishability. The expression
of relative entropy for a single-mode Gaussian state ρ1 with
respect to another state ρ2 is given by [44]

S(ρ1||ρ2) = Tr(ρ2 ln ρ2 − ρ2 ln ρ1). (28)

Since the non-Markovianity of the channel allows the
backflow of information, if there is a revival of the relative
entropy of two input Gaussian states during the evolution,
the channel is non-Markovian. The non-Markovian regions
detected by monotonicity of the relative entropy of two
squeezed vacuum states during the evolution are shown in
Fig. 7, and are exactly the same as those detected by the
criterion based on fidelity. As a consequence, they also
coincide with those predicted by Eq. (18).

V. CONCLUSIONS AND OUTLOOK

In conclusion, we proposed an all-optical scheme to
simulate non-Markovian dynamics based on the collisional
model. The interactions of system and environmental modes
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and the backflow of the information are implemented via
BSs. We find that this channel is equal to a thermal bosonic
channel and, if the environments are vacuum, it is reduced
to the qubit amplitude-damping channel. By properly tuning
the reflectivities and the phase differences, we can switch our
channel from the Markovian to the non-Markovian case.

We proved a sufficient and necessary condition for the non-
Markovianity of the channel based on Gaussian inputs. We
also investigated a few criteria that can be used to detect non-
Markovian behaviors. We find that the criteria based on trace
distance and relative entropy are stronger than the criterion
based on entanglement revival in detecting non-Markovianity.
The latter is, in fact, fragile when the environment is at high
temperature.

Finally, we would like to comment on the possible exper-
imental realization of this quantum simulator, which is based
on concatenated beam splitters of tailored reflectivity and
phase shifters (see Fig. 1). This device could be implemented
in integrated quantum photonics on different technological
platforms [45–47], with the benefit of high stability, arbitrary
control of the device parameters, and improved scalability. In
the proposed stroboscopic model the simulation of different
Markovian and non-Markovian dynamics relies on the precise
control of reflectivities in beam splitters and delays in
phase shifters. Such technological capability has already been
demonstrated in several integrated photonic experiments [47–
51], in both static and dynamic approaches.
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APPENDIX: CALCULATION OF cL

In this Appendix we will show the derivation of the
explicit expression for cL. We use aS and aj (j = 0,1, . . . ,L)
to denote annihilation operators of the input system and
environment modes, while aS ′ and aj ′ (j = 0,1, . . . ,L) to
denote annihilation operators of the corresponding output
modes. The channel with L steps is characterized by the
scattering matrix S(L).

Now let us study the physics of the element cL [i.e.,
SS,S(L)]. Note that after passing through the channel, the

annihilation operators undergo the following transformation:

S(L)−→a in = −→
a out, (A1)

with −→
a in = [aS,a0,a1, . . . ,aL]T being a vector of the input

modes and −→
a out = [aS ′ ,a0′ ,a1′ , . . . ,aL′]T being a vector of

the output modes. Therefore, the annihilation operator of the
output mode can be expressed as a combination of the input
modes as follows:

aj ′ =
L∑

k=S

Sj,k(L)ak, (A2)

and the inverse transformation, in terms of the creation
operators, from output to input modes,

a
†
j =

L∑
k=S

Sk,j (L)a†
k′ . (A3)

From Eq. (A3) we see that the physics of the modulus of
Sk,j (L) is the contribution of the j th input to the k′th output
with other inputs being vacuum. In particular, for the case of
j = S, cL [i.e., SS,S(L)] is the contribution of the system input
to the system output with vacuum environments.

After understanding the physics of cL, we can use a
simplified model to derive the expression for cL. In the
simplified model, we consider the modes 0,1, . . . ,L to be
vacuum. The reduced scattering matrix for modes aS and a0

after L steps is given by S̃(L) = S̃L
r , where S̃r is the following

2 × 2 matrix:

S̃r =
⎛⎝ r1e

iφ

√
1 − r2

1 eiφ√
1 − r2

1 r2 −r1r2

⎞⎠ . (A4)

According to the Jordan decomposition [52], we can express
S̃(L) as S̃(L) = UV U−1, where U = [ψ+,ψ−] and V =
diag[λL

+,λL
−] are 2 × 2 matrices with ψ± being the eigenvectors

of S̃r and λ± being the corresponding eigenvalues. The results
for ψ± and λ± are the following:

ψ± =
⎡⎣

√
1 − r2

1 eiφ

λ± − r1eiφ
,1

⎤⎦T

,

λ± = 1

2
(r1e

iφ − r1r2 ±
√

(r1eiφ − r1r2)2 + 4r2eiφ). (A5)

Thus we can obtain the explicit expression of cL as follows;
it is equal to the element in the first row and first column of
S̃(L),

cL = S̃S,S(L) = (λL
+ − λL

−)r1e
iφ + λ+λL

− − λL
+λ−

λ+ − λ−
. (A6)
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