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Extremal quantum correlations: Experimental study with two-qubit states
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We explore experimentally the space of two-qubit quantum-correlated mixed states, including frontier states
as defined by the use of quantum discord and von Neumann entropy. Our experimental setup is flexible enough
to allow for high-quality generation of a vast variety of states. We address quantitatively the relation between
quantum discord and a recently suggested alternative measure of quantum correlations.
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Entanglement, “the characteristic trait of quantum
mechanics” according to Schrödinger [1], is recognized as the
key resource in the processing of quantum information and
an important tool for the implementation of quantum commu-
nication and quantum-empowered metrology [2]. However,
entanglement does not embody the unique way in which
quantum correlations (QCs) can be set among the elements of a
composite system. When generic mixed states are considered,
QCs are no longer synonymous of entanglement: Other
forms of stronger-than-classical correlations exist and can be
enforced in the mixed state of a system. However, a general
consensus on the measure of quantum correlations is still far
from having been found. Among the quantifiers proposed so
far, quantum discord [3] (D) occupies a prominent position and
enjoys a growing popularity within the community working
on quantum information science due to its alleged relevance
in the model for deterministic quantum computation with
one qubit [4,5], extendibility to some important classes of
infinite-dimensional systems [6], and peculiar role in open-
system dynamics [7]. Recently, some attempts at providing an
operational interpretation to discord have been reported [8].

Yet, interesting alternatives to discord exist, each striving
at capturing different facets of QCs [9]. In Ref. [10], in
particular, a measure based on the concept of perturbation
of a bipartite quantum state [9] induced by joint local
measurements has been put forward and extensively analyzed.
Such an indicator, dubbed “ameliorated measurement-induced
disturbance” (AMID), has been shown to faithfully signal
fully classical states (i.e., states endowed with only classical
correlations). AMID embodies an interesting upper bound to
the nonclassicality content quantified by D and, at variance
with the latter, is naturally symmetric.

A landmark in the study of quantum entanglement has
been set by the identification of states maximizing the degree
of two-qubit entanglement at set values of the global state
mixedness [11]. This has spurred an extensive investigation of
the interplay between entanglement and mixedness, which has
culminated in the experimental exploration of the two-qubit
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entropic plane, including maximally entangled mixed states
(MEMS), by a number of groups worldwide [12]. Need-
less to say, given the strong interplay between nonclassical
correlations and mixedness, an experimental characterization
analogous to the one performed for MEMS is not only highly
desirable but also extremely interesting. This is precisely the
aim of this work: Building on the framework provided by the
theoretical studies in Refs. [10,13], here we experimentally
navigate the space of two-qubit discorded states, focusing our
attention, in particular, on the class of two-qubit maximally
nonclassical mixed states (MNCMS); that is, those states
maximizing the degree of quantum discord at assigned values
of their global von Neumann entropy (VNE). We show a
very good agreement between theoretical predictions and
experimental evidence across the whole range of values of
VNE for two-qubit states. Our extensive study comprises the
generation and analysis of many quantum-correlated two-qubit
states, from Werner states to MEMS associated with the
relative entropy of entanglement and VNE [11].

Technically, this has been possible due to the high flexibility
of the experimental setup used for our demonstration, which
makes clever and effective use of the possibilities offered by
well-tested sources for hyperentangled polarization-path pho-
tonic states. We engineer mixedness in the joint polarization
state of two photonic qubits by tracing out the path degree
of freedom (DOF). The properties of such residual states are
then analyzed by means of the quantum state tomography
(QST) toolbox [14], and a quantitative comparison between
their quantum-correlation contents and the predictions on
MNCMS is performed. The quality of the generated states
is such that we have been able to experimentally verify the
predictions given in Ref. [10] relating discord and AMID:
We have generated the states embodying both the lower
and upper bound to AMID at set values of discord. Our
study should be regarded as the counterpart, dealing with the
much broader context of general quantum correlations, of the
seminal experimental investigations on the relation between
entanglement and mixedness performed in Refs. [12]. As such,
it encompasses an important step in the characterization of
nonclassicality in general two-qubit states.

Resource-state generation. Before exploring the entropic
two-qubit space, it is convenient to introduce the experimental
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techniques used in order to achieve the ample variety of states
necessary for our investigation. The key element for the state
engineering in our setup is embodied by the state

|ξ 〉AB = √
1 − ε|r�〉AB |φ+(p)〉AB + √

ε|�r〉AB |HV 〉AB, (1)

with |φ±(p)〉AB = √
p|HH 〉AB ± √

1 − p|V V 〉AB . In
Eq. (1), four qubits are encoded in the polarization and
path DOFs of optical modes A and B. In particular, H (V )
represents horizontal (vertical) polarization of a photon,
while r (�) is the right (left) mode in which each photon can
be emitted from our source of entangled photon states, which
we now describe. State |ξ 〉AB is produced by suitably adapting
the polarization-momentum source of hyperentangled states
that has been recently used as basic building blocks in
experimental test-beds on multipartite entanglement [15,16].
To generate |φ+(p)〉, a uv laser impinges back and forth
on a nonlinear crystal [cf. Fig. 1(a)]. The forward emission
generates the |HH 〉 contribution. A quarter-wave plate
(QWP1) transforms the |HH 〉 backward emission into |V V 〉
after reflection at the spherical mirror M . The relative phase
between the |V V 〉 and |HH 〉 contributions is changed by
translating M . The weight

√
p in the unbalanced Bell state

|φ+(p)〉AB can be varied by rotating the quarter-wave plate
QWP2[p] near M [see Fig. 1 (a)], which twice intercepts
the uv pump beam. For more details on the generation of
nonmaximally entangled states of polarization, see Ref. [17].
A four-hole mask allows us to select four longitudinal spatial
modes (two per photon); namely, |r〉A,B and |�〉A,B , within the
emission cone of the crystal. The state thus produced reads
|HE(p)〉 = (|r�〉AB + eiγ |�r〉AB) ⊗ |φ+(p)〉AB/

√
2.

State |ξ 〉AB has been obtained by making three further
changes to |HE(p)〉 [cf. Fig. 1 (a)]. First, the contributions
of modes |�r〉 corresponding to the V cone is intercepted
by inserting two beam stops. An attenuator is then placed
on mode |r〉B so as to vary the relative weight between
|�r〉AB and |r�〉AB . This effectively corresponds to changing
ε. Finally, an HWP [labelled HWP1 in Fig. 1(a)], oriented
at 45◦ and intercepting mode |r〉B , allows the transformation
|�r〉|HH 〉 → |�r〉|HV 〉. This gives the second term in Eq. (1),
which we use to span the set of states relevant to our study.

Experimental navigation. We now introduce the measures
of QCs considered in our work and discuss the results of
our experimental investigation. We start with the reminder
that discord is associated to the discrepancy between two
classically equivalent versions of mutual information [3].
For a bipartite state ρAB the latter is defined as I(ρAB) =
S(ρA) + S(ρB) − S(ρAB). Here, S(ρ) = −Tr[ρ log2 ρ] is the
VNE of the arbitrary two-qubit state ρ and ρj is the reduced
density matrix of party j = A,B. One can also consider the
expression J ←(ρAB) = S(ρA) − H{�̂i }(A|B) (the one-way
classical correlation [3]) with H{�̂i }(A|B) ≡ ∑

i piS(ρi
A|B)

being the quantum conditional entropy associated with the
the postmeasurement density matrix ρi

A|B = TrB[�̂iρAB]/pi

obtained upon performing the complete projective measure-
ment {�i} on system B (pi = Tr[�̂iρAB]). We define discord
as D← = inf{�i }[I(ρAB) − J ←(ρAB)], where the infimum
is calculated over the set of projectors {�̂i}. Discord is,
in general, asymmetric (D← 	= D→), with D→ obtained by
swapping the roles of A and B. This is at the origin of the

(a)

(b)

FIG. 1. (Color online) (a) Setup for the generation of a
polarization-path 4-qubit entangled state. A Type-I nonlinear β-
barium-borate crystal (BBO) is pumped by a vertically polarized
uv laser at wavelength λp in a double-pass configuration. This
produces nonmaximally entangled polarization states that, through
the quarter-wave plates QWP1 and QWP2 (QWP1 and QWP2 are
quarter-wave plates for 2λp and λp , respectively) and mirror M, can be
turned into |φ+(p)〉AB (cf. the body of the paper). The four-hole mask
selects four longitudinal spatial modes within the emission cone of
the BBO crystal. The attenuator ε and the half-wave plates HWP1 and
HWP2 allow the engineering of the polarization-path entangled state
|ξ〉AB . (b) Interferometer needed to perform the trace over the path
DOF and generate the states used in our study (BS stands for beam
splitter). Quartz plates of various thickness have been used to produce
ρ↓(q)AB and ρW (ε)AB . We also show the analyzers Dj (j = A,B)
needed for QST. Each Dj is made of the cascade of a QWP, an
HWP, and a polarizing beam splitter (PBS). The signal then enters a
photodetector.

possibility to distinguish between quantum-quantum states
having (D←,D→) 	= 0, quantum-classical states, classical-
quantum states, which are states having one of the two
values of discord strictly null, and, finally, classical-classical
states for which D←,D→ = 0, which are bipartite states that
simply embed a classical probability distribution in a two-qubit
state [18]. The asymmetry inherent in discord would lead
us to mistake a quantum-classical state for a classical state.
In order to bypass such an ambiguity we will consider the
symmetrized discord D↔ = max[D←,D→], which is zero
only for classical-classical states.

AMID has been introduced as an alternative indicator
of QCs as A = I(�AB) − Ic(�AB) [10], where Ic(�AB) ≡
sup{�̂}I(��̂

AB) and ��̂
AB is the state resulting from the ap-

plication of the arbitrary complete projective measurements
�̂kl = �̂A,k ⊗ �̂B,l . Such a definition is motivated by the
study in Ref. [19], where Ic is the classical mutual infor-
mation (optimized over projective measurements), which is a
symmetric measure of bipartite classical correlations.A is thus
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FIG. 2. (Color online) (a) Exploration of the D↔-vs-S plane. The
solid line shows the MNCMS boundary (b) Experimental comparison
between AMID andD↔. The solid lines embody the bounds toA at set
values of D↔. Both panels show experimental states and associated
uncertainties.

the difference between total and classical mutual information
and has the prerequisites to be a bona fide measure of
QCs [18].

We are in a position to discuss the results of our exper-
iment by first addressing the (D↔,S) plane. As shown in
Refs. [10,13], whenD↔ and S are taken as quantitative figures
of merit for QCs and global mixedness, the class of MNCMS
consists of four families of states, all of the form

ρX
AB =

⎡
⎢⎢⎣

ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ∗

23 ρ33 0
ρ∗

14 0 0 ρ44

⎤
⎥⎥⎦ , with

∑
j

ρjj = 1. (2)

The low-entropy region S ∈ [0,0.9231) pertains to the
rank-3 states ρR

AB embodying MEMS for the relative entropy
of entanglement [11]:

ρR
AB = 1 − a + r

2
|+〉〈+| + 1 − a − r

2
|−〉〈−|

+ a|01〉〈01|, (3)

with 0 � a � 1/3 and r a proper function of a [10]. In Eq. (3)
we have used the Bell state |±〉 ≡ |φ±(1/2)〉AB . States ρR

AB

span the leftmost trait in Fig. 2(a). Next comes the family of
Werner states

ρW
AB(ε) = (1 − ε)|+〉AB〈+| + ε14/4, (4)

which occupy the entropic sector S ∈ [0.9231,1.410) for ε ∈
[0.225,0.426) and the high-entropy region ofS ∈ [1.585,2] for
ε ∈ [0.519,1]. Such boundaries are clearly shown in Fig. 2(a).
Evidently, two more families belong to the MNCMS boundary
[cf. the two traits corresponding to S ∈ [1.410,1.585)]. Such
states are currently out of our grasp due to the small entropy
window they belong to, which challenges the tunability of the
VNE achievable by our method.

It is worth noticing that quantum discord and AMID share
the very same structure of MNCMS, which can thus be
rightfully regarded as the two-qubit states whose QCs are

maximally robust against state mixedness. This class of states
are thus set to play a key role in realistic implementations
of quantum information schemes based on nonclassicality
of correlations as a resource [4,5]. Currently, the interest
in designing practical schemes for the exploitation of such
features is enormous. The sharing of such a class of states
by the two measures addressed here pushes to set a hierarchy
between A and D↔; a point along the lines of the quantitative
comparisons between different measures of entanglement
applied to mixed two-qubit states [20].

Such a relationship is given in Fig. 2(b), where the solid
lines show that AMID embodies an upper bound to D↔ and is
in agreement with the latter in identifying classical-classical
states with no QCs. Any physical two-qubit state lives between
the lower bound with A = D↔ and the upper bound. A full
characterization of such boundaries is possible and can be
thoroughly checked by means of a numerical exploration of
the A-vs-D↔ plane [10]. Clearly, the lower bound in the
AMID-discord plane is spanned by pure states of variable
entanglement (for pure states A = D↔). However, it also
accommodates both the Werner states and the family

ρ
↓
AB(q) = (1 − q)|+〉AB〈+| + q|−〉AB〈−|, (5)

where q ∈ [0,0.5], while the upper bound is spanned by

ρ↑(ε,p)AB = (1 − ε)|φ+(p)〉AB〈φ+(p)| + ε|01〉AB〈01| (6)

for values of (ε,p) satisfying a transcendental equation [10].
Starting from the state |ξ 〉AB , we have spanned the MNCMS
boundary in Fig. 2(a) and the frontiers in the (A,D↔)
plane.

Generation of ρ↑
AB . This class serves as an ideal platform for

the description of the experimental method pursued to achieve
the remaining states addressed in our study. By tracing out the
path DOF in |ξ 〉AB and using the correspondence between
physical states and logical qubits |H 〉 → |0〉, |V 〉 → |1〉,
the density matrix for state ρ↑(ε,p) is achieved. The trace
over the path DOF is performed by matching the left and
right side of the modes coming from the four-hole mask in
Fig. 1(a) on a beam splitter [indicated as BS in panel (b) of
the same figure]. When the difference between left and right
paths is larger than the photon coherence time, an incoherent
superposition of |φ+(p)〉AB and |HV 〉AB is achieved. The
values of the pairs (ε,p) determining the experimental states
[shown as blue dots in Fig. 2(b)] are given in Table I,
together with their uncertainties. The values (ε,p) = (0,0.5)
and (ε,p) = (0.2,1) correspond to the case of a pure state
(having A = D↔ = 1) and a completely mixed state (with
A = D↔ = 0), respectively.

Generation of ρ
↓
AB . The family embodied by ρ

↓
AB(q) can

also be generated starting from the resource state |ξ 〉AB . By
selecting only the correlated modes |r�〉AB from the four-hole

TABLE I. Experimental values of the parameters entering ρ↑(ε,p) and their uncertainties.

Value and Uncertainty

ε 0.00 ± 0.01 0.05 ± 0.01 0.10 ± 0.01 0.15 ± 0.01 0.18 ± 0.01 0.20 ± 0.01
p 0.50 ± 0.02 0.70 ± 0.01 0.80 ± 0.01 0.90 ± 0.01 0.95 ± 0.02 0.99 ± 0.02
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mask and setting QWP2 at 0◦ (so that p = 1/2 is fixed), we
generate the Bell state |+〉AB〈+| ≡ ρ↓(q = 0). By inserting
a birefringent quartz plate of proper thickness on the path of
one of the two correlated modes, we controllably affect the
coherence between the |HH 〉 and |V V 〉 states of polarization.
Several quartz plates of different thickness �q have been used
to transform |+〉 into ρ↓(q). The value of q is related to the
parameter C = (�n)�q/(cτcoh), where τcoh is the coherence
time of the emitted photons and �n is the difference between
ordinary and extraordinary refraction indices in the quartz. We
skip inessential details and simply state that q = 1/2 (q → 0)
for C � 1 (C → 0).

Generation of ρR,W . Our source of ρR and the Werner state
uses the setup previously described for the states ρ

↑
AB(ε,p).

By setting p = 1/2 and by adding a decoherence between
|HH 〉 and |V V 〉 (related to the parameter r) as previously
explained, we can obtain ρR

AB from ρ
↑
AB . As for ρW

AB , while
we have already addressed the method used to generate the
|+〉AB〈+| component of the state, it is worth mentioning
how to get the 14 contribution. This has been obtained by
inserting a further HWP [HWP2 in Fig. 1(a)] on the |�〉A mode
and rotating both HWP1 and HWP2 at 22.5◦ so as to generate
|�r〉AB | + +〉AB . By using two quartz plates longer than τcoh

and of different thickness, we obtained a fully mixed state
of modes |�r〉AB . The quartz plates introduce decoherence on
each photon state. By matching the two correlated-mode pairs
on a BS, ρW

AB is achieved.
To ascertain the properties of the states discussed above,

we have used QST [14] so as to obtain the physical density
matrices and quantify D↔, S, and A. The Pauli operators

needed to implement the QST have been measured by using
standard polarization analyzers and two detectors [cf. the
inset in Fig. 1(b)]. Integrated systems given by gradient-index
(GRIN) lenses and single-mode fibers [21] have been used to
collect the radiation after the QST setup and send it to the
detectors DA,B .

Discussion and conclusions. Excellent agreement between
the theoretical expectations and experimental results has been
found for both the navigation in the space of MNCMS
and the quantitative confirmation of the relation between
A and D↔. As seen in Fig. 2, almost the whole class of
maximally nonclassical states has been explored, with the
exception of a technically demanding (yet interesting) region.
Remarkably, the whole upper bound in the (A,D↔) plane has
been scanned by an experiment that has produced an ample
wealth of interesting states. Technically, this has been achieved
by engineering a 4-qubit hyperentangled state. In particular,
we exploit the path as an ancillary resource to obtain the
desired states encoded in polarization. Our analysis reports
a full navigation in the space of general QCs at set values
of global entropy, thus going beyond analogous investigations
performed on entanglement [12]. We hope that our efforts
will spur further interest in the study of the interplay between
mixedness and nonclassicality.
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project 2010 of Sapienza Università di Roma, and the UK
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