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Testing Hardy’s nonlocality proof with genuine energy-time entanglement
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We show two experimental realizations of Hardy’s ladder test of quantum nonlocality using energy-time
correlated photons, following the scheme proposed by Cabello et al. [Phys. Rev. Lett. 102, 040401 (2009)].
Unlike previous energy-time Bell experiments, these tests require precisely tailored nonmaximally entangled
states. One of them is equivalent to the two-setting and two-outcome Bell test requiring a minimum detection
efficiency. The reported experiments are still affected by the locality and detection loopholes, but are free of the
post-selection loophole of previous energy-time and time-bin Bell tests.
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I. INTRODUCTION

A loophole-free violation of a Bell inequality would prove
the impossibility of describing nature in terms of local hidden-
variable theories [1], and the possibility of post-quantum
secure communications [2]. Among all versions of Bell’s
proof, Hardy’s [3,4] is one of the simplest. In addition to
simplicity, Hardy’s version has one interesting feature: it
only works for nonmaximally entangled states, which are
precisely the best candidates for a photonic loophole-free
experiment with inefficient detectors [5,6]. To be more
specific, the experimental realization of the two-party, two-
setting, and two-outcome Bell test with minimum required
detection efficiency, assuming that all detectors have the
same efficiency [5,6], is equivalent to a test of Hardy’s
proof.

Standard energy-time and time-bin Bell tests (e.g., Ref. [7])
suffer from a specific loophole called the post-selection
loophole [8,9], which can be avoided using a scheme in-
troduced in Ref. [9]. Energy-time Bell experiments with
maximally entangled states and free of the post-selection
loophole have been recently performed by using this scheme
[10]. Moreover, the scheme can be applied to nonpho-
tonic systems [11] and can be extended to multipartite
scenarios [12].

The aim of this work is to show that energy-time entan-
glement can also be used to produce Hardy-type violations
of Bell inequalities free of the post-selection loophole, as a
preliminary step toward a loophole-free Bell test with pho-
tonic random destination sources [13]. The two experiments
reported in this paper will also show the feasibility of energy-
time entanglement for producing nonmaximally entangled
states, which are essential for some quantum-key-distribution
protocols [14].
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II. HARDY’S PROOF

Hardy’s proof of nonlocality [3,4] can be summarized
as follows. Let us consider two observers, Alice and Bob,
measuring dichotomic (with outputs −1 and 1) observables.
Alice measures a0 and a1, while Bob measures b0 and b1.
Let us define P (ai,bj ) as the joint probability of obtaining
ai = bj = 1, and P (āi ,bj ) as the joint probability of obtaining
ai = −1 and bj = 1. For any local hidden-variable theory with
(i) P (a0,b0) = 0, (ii) P (ā0,b1) = 0, and (iii) P (a1,b̄0 = 0), the
probability P (a1,b1) must be equal to zero. However, for any
nonsymmetric pure entangled state, it is always possible to find
observables a0, a1, b0, and b1 such that (i), (ii), and (iii) are
satisfied while (iv) P (a1,b1) �= 0 [15]. P (a1,b1) is known as
the “Hardy fraction.” This provides a proof of the impossibility
of describing quantum mechanics with local hidden-variable
theories.

As shown by Garuccio and Mermin [16,17], Hardy’s proof
can be put in a more generalized framework by writing it in
terms of the following inequality:

S1 ≡ P (a1,b1) − P (a0,b0) − P (ā0,b1) − P (a1,b̄0) � 0,

(1)
which holds for any local hidden-variable theory, for any
choice of observables. In this generalized version, there is
no need for vanishing terms in the experimental test; it
is only required that P (a1,b1) overcomes the sum of the
remaining probabilities of Eq. (1). Nevertheless, the interesting
feature of Hardy’s argument lies in the fact that once one
has proven that the probabilities on the right-hand side of
the Garuccio-Mermin inequality are null, the detection of
just one pair of photons, at the output a1 = 1 and b1 = 1, is
enough to refute the local behavior of nature. However, under
realistic conditions, measuring a null probability is not trivial,
as discussed in Ref. [16], and the generalization of Hardy’s
test to the Bell-type test based on the Clauser-Horne (CH)
inequality [18] is unavoidable.

The inequality given in Eq. (1) is the CH inequality for
an experiment where the following conditions hold: (a) The
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quantum efficiency of the detectors is η = 1 and (b) photon
pairs impinge into the detection apparatuses. Therefore,
Hardy’s proof can be seen as a special case of a Bell test
based on the CH inequality. This can be easily demonstrated.
By taking into account the above detection conditions, the
resulting probabilities of single-photon detections are given
by

PA(ai) = P (ai,bj ) + P (ai,b̄j ), (2a)

PB(bj ) = P (ai,bj ) + P (āi ,bj ), (2b)

with i = 0,1 and j = 0,1. For the experimental setup being
considered, the CH inequality can be written as

P (a1,b1) + P (a0,b1) + P (a1,b0) − P (a0,b0)

−PA(a1) − PB(b1) � 0, (3)

which becomes Eq. (1) when one replaces the marginal
probabilities of Eq. (2b) into Eq. (3). It is also worth
mentioning that under these conditions, the CH inequality
is equivalent to the Clauser-Horne-Shimony-Holt (CHSH)
inequality [19]. Therefore, Hardy’s proof can also be seen
as a particular case of the nonlocality tests based on the CHSH
inequality. Indeed, any experimental setup prepared for testing
the CHSH inequality can also be used to test Hardy’s proof if
the degree of entanglement of the state being generated can be
manipulated.

Hardy’s proof can be generalized by considering a sys-
tem in which, having defined K + 1 dichotomic observ-
ables ak and bk (k = 0, . . . ,K), the following probabilities
hold:

P (aK,bK ) �= 0,

P (āk−1,bk) = 0,

P (āk,bk−1) = 0.

}
k = 1, . . . ,K. (4)

When K is larger than 1, the test can be interpreted as a chained
violation and represented as a ladder [20,21] on which each
step implies the one below (see Fig. 1).

Let us consider, for example, K = 2. If the first equation
in (4) holds, then there exists a nonzero probability that both
a2 = 1 and b2 = 1 occur. The second and third equations
in (4) state that the probabilities of a2 = 1 and b1 = −1, or
a1 = −1 and b2 = 1, are zero. In this case, a1 = 1 and b1 = 1
should have been observed. The same applies to the lower
step, reaching in this way the bottom of the ladder. At this
point, we obtain that both a0 = 1 and b0 = 1 should have
been measured, and thus the probability P (a0,b0) should be
different from zero. In local theories, P (a0,b0) should be at
least equal to P (aK = 1,bK = 1). If there exists a system in
which this probability is vanishing, a classical theory would
not be able to describe the system, and the Hardy inequality
would be violated. A system like that can be implemented
by the setup shown in the next section. It can be tested by
generalizing Eq. (1) for the ladder proof case as

SK ≡ P (aK,bK ) − P (a0,b0)

−
K∑

k=1

[P (ak,b̄k−1) + P (āk−1,bk)] � 0. (5)

FIG. 1. (Color online) Ladder proof schemes for K = 1 and
K = 2.

III. EXPERIMENT

A. Energy-time Hardy’s test

A Hardy’s test can be, in principle, implemented by using
any entangled state, except the one which is maximally
entangled. Our capacity to generate two photons correlated in
the energy-time degree of freedom in partially entangled states,
and the ability to detect them with controllable interferometric
techniques, allows for implementing a Hardy’s test with the ex-
perimental setup of Fig. 2. Let us consider the energy-time state
of two down-converted photons |�〉 ≡ α|SASB〉 + β|LALB〉
and define the following K + 1 spatial measurement basis, in
each direction Ak and Bk , where k = 0, . . . ,K:

|Ak〉 = cos θk|S〉 + sin θk|L〉, (6a)

|A⊥
k 〉 = sin θk|S〉 − cos θk|L〉, (6b)

|Bk〉 = cos θk|S〉 + sin θk|L〉, (6c)

|B⊥
k 〉 = sin θk|S〉 − cos θk|L〉. (6d)

Let us define the operators ak (bk is defined similarly) as having
outcome 1 or −1 when the state |Ak〉 or |A⊥

k 〉, respectively, is
detected. In order to prove nonlocality, the conditions written
in (4) must be satisfied. That is,

P (aK,bK ) = |〈AK |〈BK |�〉|2 �= 0, (7a)

P (āk−1,bk) = |〈A⊥
k−1|〈Bk|�〉|2 = 0, (7b)

P (ak,b̄k−1) = |〈Ak|〈B⊥
k−1|�〉|2 = 0. (7c)

Moreover, the following condition must hold:

P (a0,b0) = |〈A⊥
k−1|〈B⊥

k−1|�〉|2 = 0. (8)

VBS1A

VBS2AVBS1B

VBS2B DADB

FIG. 2. (Color online) Scheme needed to implement a Hardy’s
test using energy-time entanglement. VBS: variable beam splitter.

042105-2



TESTING HARDY’s NONLOCALITY PROOF WITH . . . PHYSICAL REVIEW A 83, 042105 (2011)

The values of θk solving the previous equations are given by
the relations

sin θk = (−1)k
T k+ 1

2√
T 2k+1 + 1

, (9)

with t = α/β related to the degree of entanglement. The Hardy
fraction P (aK,bK ) is then given by

P (aK,bK ) = t2(t2K − 1)2

(t2K+1 + 1)2(1 + t2)
. (10)

When K = 1 (K = 2), this function is maximized at
t = t∗1 � 0.46 (t = t∗2 � 0.57) with value P (a1,b1)max � 0.09
[P (a2,b2)max � 0.17]. When K = 1, only 9% of particles
violate locality, but this fraction can be amplified using a higher
value of K . It has been shown, in fact, that when K −→ ∞,
P (aK,bK )max −→ 50% [20].

B. Experimental setup

We generated energy-time correlated photons by sponta-
neous parametric down-conversion (SPDC) [22,23]. A 1-mm
β-barium borate crystal (BBO) shined by a uv laser beam
generated pairs of photons at a wavelength of 532 nm.
The emission time of each pair is unpredictable due to the
long coherence length (�1 m) of the pump laser beam.
The two photons generated with horizontal polarization are
sent through two unbalanced interferometers as shown in
Fig. 3. As discussed below, this is a modified version of the
interferometric scheme previously used by us [10]. As for the
setup previously used, the geometry of these interferometers
has been shown to allow for more genuine tests of quantum
nonlocality with energy-time correlated photons [9]. In this
case, even though the experiment is still constrained by the
locality and detection loopholes [24], it is not necessary to
assume any other auxiliary assumption for validating it as a
conclusive Bell test [1]. These interferometers are unbalanced
and so one can refer to their arms as short (S) and long (L).
The optical paths followed by the down-converted photons
are such that coincidences between detectors DA and DB are

HWP1A

PBS1A

PBS2A

HWP2A

PBS3A

HWP1B

PBS1B

PBS2B

HWP2B

PBS3B DADB

FIG. 3. (Color online) Experimental setup. A step-by-step trans-
lation stage allows us to create the indistinguishability condition
(LA − SA = LB − SB ). Coincidence windows are 3ns and, due to
continuous wave pumping, the probability of two photon-pair events
is negligible. Interference filters select a bandwidth of 3.5 nm. The
radiation is coupled into single-mode optical fibers and sent to
pigtailed avalanche photo-counting modules connected to a circuit
used to record the single and the coincidence counts. The phase of
the interferometer can be controlled using a piezoelectric stage on
which PBS2A is assembled.

measured only when they both propagate through the short or
long photon paths.

In order to perform a Hardy’s test, nonmaximally entangled
states are needed, and it is also possible to use just two detectors
instead of four as used in the previous experiment [10]. The
new scheme is shown in Fig. 2, where variable beam splitters
(VBS1A,B ) are used on both modes in order to prepare the
nonmaximally entangled state,

|ψ〉 = α|SASB〉 + β|LALB〉. (11)

In this way, the ratio t = α/β can be controlled by using the
following relation between the transmittivities (TA and TB)
and reflectivities (RA and RB) of VBS1A,B and t :√

TATB

RARB

= α

β
= t. (12)

The two VBS2A,B can be used to project into the states of
Eqs. (6a)–(6d), providing that their transmittivities and reflec-
tivities are linked to θk being

√
R = sin θk and

√
T = cos θk .

In Fig. 3 we show the setup we actually used for the
experiment. It is equivalent to the one shown in Fig. 2, but
it does not use variable beam splitters.

The VBSs used to prepare the state, namely VBS1A,B , are
implemented in the way shown by the scheme of Fig. 4(a),
where the polarization of both photons A and B is changed by
a half-wave plate (HWP1), and then each photon is split in the
long and short paths by a polarizing beam splitter (PBS1). After
the PBS1, we will have on each mode, in transmission, the
state |S〉|H 〉, while on reflection, the state |L〉|V 〉. By rotating
HWP1, one can change the amount of light being reflected
and transmitted, allowing the creation of a nonmaximally
entangled state.

To implement the two VBS2, we used the scheme reported
in Fig. 4(b): since the |S〉 (|L〉) mode is horizontally (vertically)
polarized, any state encoded into the energy-time degree of
freedom is converted into polarization encoding by the PBS2.
Then the projection on the desired state can be implemented
by the standard polarization analyzer (HWP2 rotated at θk/2
and PBS3).

FIG. 4. (Color online) (a) Generation of nonmaximally entangled
state and (b) projection on the measurement basis. This setup
is repeated on both modes A and B, and is used to generate a
nonmaximally entangled state and project on the desired base, as
described in the text.
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TABLE I. Experimental probabilities needed to violate the
inequality SK � 0 for K = 1 and K = 2. The reported data are
obtained with the value of t that maximizes the violation, namely,
t = t∗

1 � 0.46 for K = 1, and t = t∗
2 � 0.57 for K = 2.

K = 1, t = t∗
1 K = 2, t = t∗

2

P (a1,b1) 0.095 ± 0.005 P (a2,b2) 0.170 ± 0.008
P (a1,b̄0) 0.005 ± 0.001 P (a2,b̄1) 0.007 ± 0.002
P (ā0,b1) 0.005 ± 0.001 P (ā1,b2) 0.009 ± 0.002
P (a0,b0) 0.007 ± 0.001 P (a1,b̄0) 0.009 ± 0.002
S1 0.078 ± 0.005 P (ā0,b1) 0.009 ± 0.002

P (a0,b0) 0.011 ± 0.002
S2 0.124 ± 0.009

C. Experimental results

Our experiment focused on the violation of the Hardy
inequality (5) for K = 1 and K = 2. For this purpose, we
measured the probabilities described by Eqs. (7) and (8) as

P = C(ai = α,bj = β)

CTOT
, (13)

where i,j are the directions required, and α = ±1 and β = ±1
as previously specified. C(ai = α,bj = β) is the number of
coincidences obtained by measuring on the projected state
needed for both modes, while CTOT = C (H,H ) + C (V,V ) +
C (H,V ) + C (V,H ) is the sum of the number of coincidences
over all the possible outcomes in the base {|H 〉,|V 〉}.

FIG. 5. (Color online) Experimental results for K = 1. These two
graphs show the result obtained for the one-step ladder proof. The
top graph shows the agreement between the data and the theoretical
prediction (continuous line) for the probability P (a1,b1). The bottom
graph shows the obtained values of S1 compared to the theory
(continuous line). The dotted line represents the classical bound:
when S1 is greater than 0, the inequality (1) is violated.

FIG. 6. (Color online) Experimental results for K = 2. The
results obtained for a two-step ladder proof are shown. As in the
previous figure, the top graph shows the probability P (a2,b2) along
with the theoretical function, while the bottom graph shows the
inequality violation. When S2 is greater than 0, the inequality (5)
is violated.

In Table I, we show the experimental probabilities obtained
for K = 1 and K = 2 when t = t∗1 and t = t∗2 , respectively.
In Figs. 5 and 6 we show the probabilities obtained for
K = 1 and K = 2 for different values of t = α/β. Each figure
shows the graph of the experimental P (aK,bK ) compared to
the theoretical values described by Eq. (10) and the graph
of the inequality violation SK defined in (1) and (5). The
obtained values of P (aK,bK ) are in good agreement with
the theoretical predictions for both K values. The inequality
is not violated for large values of t , where t � 0.8 (see
Figs. 5 and 6). This can be due to the imperfect experimental
visibility. In fact, we measured V ∼ 96% when the state
is maximally entangled (t = 1). However, this value is not
enough to allow the probabilities P (ak,b̄k−1), P (āk−1,bk), and
P (a0,b0) to vanish completely. This feature is more evident
when the degree of entanglement increases since, in this case,
the |SS〉/|LL〉 interference is more important.

IV. CONCLUSIONS

Recently introduced schemes for energy-time and time-bin
entanglement can be improved for a Bell test with nonmax-
imally entangled states free of the post-selection loophole.
The important point is that these tests are less demanding in
terms of detection efficiency than those based on maximally
entangled states (which were the states used in previous Bell
tests with energy-time and time-bin entanglement), even when
the post-selection is taken into account [13]. The experiments
reported in this paper still suffer the detection and nonlocality
loopholes, but show the feasibility of energy-time Bell tests
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with nonmaximally entangled states and free of the post-
selection loophole.

In addition, the ability to project energy-time correlated
photons in this more general set of projections may also
have other important applications. It could be useful for
entanglement witnesses, quantum tomography, and some cryp-
tographic protocols requiring nonmaximally entangled states.

ACKNOWLEDGMENTS

G.L. acknowledges support from FONDECYT Grant No.
11085055 and Project No. PBCT-PDA21. A.C. acknowledges
support from MICINN (Project No. FIS2008-05596) and the
Wenner-Gren Foundation. C.S. acknowledges support from
FONDECYT Grant No. 1080383.

[1] J. S. Bell, Physics (NY) 1, 195 (1964).
[2] J. Barrett, L. Hardy, and A. Kent, Phys. Rev. Lett. 95, 010503

(2005).
[3] L. Hardy, Phys. Rev. Lett. 68, 2981 (1992).
[4] L. Hardy, Phys. Rev. Lett. 71, 1665 (1993).
[5] P. H. Eberhard, Phys. Rev. A 47, R747 (1993).
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