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2Dipartimento di Fisica, Università Sapienza di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
3Istituto Nazionale di Ottica Applicata (INO-CNR), L.go E. Fermi 6, I-50125 Florence, Italy

4Departamento de Fı́sica Aplicada II, Universidad de Sevilla, E-41012 Sevilla, Spain
(Received 23 December 2009; published 5 March 2010)

Franson-like setups are inadequate for multiparty Bell experiments with energy-time entanglement because
postselected events can depend on the local settings, and local models can exploit this feature to reproduce the
quantum predictions, even in the case of ideal devices. We extend a previously introduced interferometric scheme
[A. Cabello et al., Phys. Rev. Lett. 102, 040401 (2009)] to solve this problem in the N -qubit and N -quN it
cases. In addition, the proposed setups allow us to prepare and test N -qubit Greenberger-Horne-Zeilinger and
(
∑N

i=1 |i · · · i〉)/√N energy-time entangled states.
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I. INTRODUCTION

Franson [1] showed how the essential uncertainty in the
time of emission of a pair of particles can be exploited
to make undistinguishable two alternative paths that the
particles can take and create what is called “energy-time”
or “time-bin” [2] entanglement, depending on the method
used to have uncertainty in the time of emission. Franson
proposed an experiment to demonstrate the violation of
the Bell Clauser-Horne-Shimony-Holt (CHSH) inequality [3]
using energy-time entanglement. However, Aerts et al. [4]
(see also Ref. [5]) showed that, even in the ideal case of
perfect preparation and perfect detection efficiency, there are
local hidden-variable (HV) models that reproduce the quantum
predictions for Franson’s test of the Bell-CHSH inequality.
The reason is that, in Franson’s setup, the fact that photons are
detected in coincidence can depend on the local settings. This
can be exploited to build local HV models which simulate the
quantum predictions (see Refs. [4,5] for details).

Recently [6], Franson has argued that these local HV
models are not realistic in the sense of Einstein, Podolsky,
and Rosen (EPR) [7], because they do not describe the path
taken by the photons. However, in the Franson Bell-CHSH
experiment, the path taken by one photon cannot be predicted
with certainty from a measurement on the distant photon,
thus the path is not an element of reality in the sense of
EPR. The assumption that the local models must describe
the paths taken by the photons is an extra assumption which
is not necessarily satisfied by all local HV models. Actually,
this extra assumption is equivalent to the extra assumption
that the fact that a photon is detected at a specific time is
independent of the local experiment performed on that photon.
The introduction of this assumption was previously suggested
in Ref. [4] as a way to avoid the problem. The Franson
Bell-CHSH experiment can rule out local HV with this extra
assumption but cannot rule out local HV models without this
assumption.

*http://quantumoptics.phys.uniroma1.it/
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Three different strategies have been proposed to solve
this problem. Aerts et al. [4] proved that local HV models
can be ruled out using a Franson’s setup with a very fast
local switching if, instead of testing the standard two-setting
Bell-CHSH inequality, a specific three-setting Bell inequality
is tested. This solution has two problems: it requires a fast
switching that is very difficult to achieve and also requires
obtaining experimentally a violation which is very close to
the maximum quantum violation obtained assuming ideal
equipment (i.e., it requires nearly perfect visibility). To our
knowledge, so far there is no experimental implementation of
this proposal.

Brendel et al. [2] proposed a modification of Franson’s
setup which, in principle, solves the problem. The modification
consists of replacing the two beam splitters which are closer
to the source by switchers synchronized with the source.
However, to our knowledge, these active switchers are not
available for photonic sources, thus in actual experiments they
are replaced by passive beam splitters (see, e.g., Ref. [2]), so
the resulting setup suffers from the same problem the original
Franson’s setup has. Recently, it has been pointed out that
active switchers could be feasible if photons are replaced by
molecules [8].

More recently [5], we have proposed a more radical
modification of Franson’s setup which solves the problem and
can be actually implemented in the laboratory with photons.
In our scheme, both the short path of the first (second) particle
and the long path of the second (first) particle ends in Alice’s
(Bob’s) detectors. Then, the selection of events is local (i.e.,
it does not require communication between Alice and Bob),
since coincidences occur every time the local observer detects
only one particle and, more importantly, is independent of the
local settings (see the details in Ref. [5]). Due to this last
property, this scheme does not suffer from the postselection
loophole that affects all previous Bell-CHSH experiments
with energy-time or time-bin entangled photons. This scheme
has been recently implemented in the laboratory [9] and has
inspired a new source of electronic entanglement [10].

The aim of this article is to extend this scheme to the
multipartite case and discuss its applications for testing
an important class of multipartite Bell inequalities using
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energy-time entanglement and preparing some multipartite
multilevel energy-time entangled states relevant for quantum
information processing.

The article is organized as follows. In Sec. II, we
show that some previously proposed multipartite Franson-like
configurations are inadequate for testing multipartite Bell
inequalities of Mermin’s type [11] with energy-time (and
time-bin) entanglement. In Sec. III, we introduce a new scheme
for creating Greenberger-Horne-Zeilinger (GHZ) [12] energy-
time states and test Mermin’s tripartite Bell inequality without
the problem previous proposals have. In Sec. IV, we extend
the scheme to create three-qutrit energy-time entangled states
and then generalize the setup to prepare N -quN it energy-time
entangled states of the form (

∑N
i=1 |i · · · i〉)/√N . In Sec. V,

we discuss the sources required for generating simultaneously
N particles with an unknowable time of emission and discuss
some problems appearing when N > 2. Finally, in Sec. VI, we
present our conclusions.

II. FRANSON-LIKE CONFIGURATIONS ARE
INADEQUATE FOR MULTIPARTITE BELL

EXPERIMENTS

Franson-like configurations for N = 3 and N = 4 particles
have been proposed in Refs. [13,14]. The simplest case, n = 3,
is illustrated in Fig. 1. In these configurations, each of the n

parties is at the end of an interferometer with a short path S and
a long path L, and particle i always ends in party Pi’s detectors.
Similar configurations can be easily constructed for N � 3
parties by adding more arms [13,14]. In this section we assume
that we have a source emitting simultaneously three particles

FIG. 1. (Color online) Setup for a Franson-like energy-time three-
party GHZ experiment. The source emits three particles (1, 2, and 3)
at the same unknown time. Each of them is fed into an unbalanced
interferometer with a short (S) and a long (L) path. The essential
uncertainty in the time of emission makes undistinguishable the case
where the three photons are detected at time t0 after the time of
emission (SSS) from the case where the three photons are detected
at time t1 = t0 + �t after the time of emission (LLL).

at an unknown time (actual sources with approximately this
property will be discussed in Sec. V).

The setup in Fig. 1 is inadequate for testing the three-
party Bell-Mermin inequality [11] inspired by GHZ proof
of quantum nonlocality [12]. The three-party Bell-Mermin
inequality is

µ := |〈A0B0C1〉+ 〈A0B1C0〉+ 〈A1B0C0〉 − 〈A1B1C1〉| � 2,

(1)

where A0 and A1 are dichotomic observables with possible
values +1 or −1 on Alice’s qubit, B0 and B1 are dichotomic
observables on Bob’s qubit, and C0 and C1 are dichotomic
observables on Carol’s qubit.

According to quantum mechanics, the largest violation of
inequality (1) is obtained by preparing the GHZ state

|GHZ〉 = 1√
2

(|SSS〉 + |LLL〉), (2)

which is an eigenstate with eigenvalue −1 of σ (1)
x ⊗ σ (2)

y ⊗
σ (3)

y , σ (1)
y ⊗ σ (2)

x ⊗ σ (3)
y , σ (1)

y ⊗ σ (2)
y ⊗ σ (3)

x , and −σ (1)
x ⊗ σ (2)

x ⊗
σ (3)

x , and measuring the following six local observables:

A0 = σ (1)
y , A1 = σ (1)

x , (3a)

B0 = σ (2)
y , B1 = σ (2)

x , (3b)

C0 = σ (3)
y , C1 = σ (3)

x , (3c)

Then, quantum mechanics predicts µ = 4, which maxi-
mally violates inequality (1).

The setup of Fig. 1 can be used to produce the GHZ state
(2) by postselecting threefold coincidences (i.e., those events
in which all three photons are detected at the same time). This
occurs in 25% of the cases. In the other cases, with equal
frequencies, either two photons are detected at time t0 and
one photon is detected at time t1 = t0 + �t or one photon is
detected at time t0 and two photons are detected at time t1. The
parties must store the coincident events and reject the other
events.

However, Table I shows a local HV model which reproduces
the quantum predictions and, in particular, gives µ = 4. In
the model, for each local measurement, the outcomes S+
(denoting that the photon will be detected at time t0 in the
detector +1), S−, L+, and L− (denoting that the photon will
be detected at time t1 in the detector −1) are obtained with
equal probability (as predicted by quantum mechanics). Three-
fourths of the events are rejected during the postselection
procedure because in that cases not all three photons are
detected. For the selected events, µ = 4, which is the violation
predicted by quantum mechanics for an ideal experiment.
Actually, similar local HV models can be constructed to
simulate any value µ � 4. Moreover, similar local HV models
can be constructed to simulate any quantum prediction for any
N -party Mermin inequality using a Franson-like configuration
like the one in Fig. 1, but with an arbitrary number N � 2 of
parties, each of them with two settings.

III. PROPOSED TEST OF MERMIN INEQUALITY WITH
THREE-QUBIT GHZ ENERGY-TIME STATES

The setups in in Refs. [13,14] cannot exclude local HV
models like the one introduced in the previous section. Then, a
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TABLE I. 1536 sets of instructions of the local HV model. Each row represents 96 sets of local instructions (first six entries)
and their corresponding contributions for the calculation of µ after applying the postselection procedure (last four entries). In
the first row, L, L, L/S denotes the 48 sets with three L or two L and one S, with all possible combinations of signs:
L+, L+, L+; L+, L+, S+; L+, S+, L+; . . . ; S−, L−, L−. The other 48 sets are obtained by interchanging S and L.

A0 A1 B0 B1 C0 C1 〈A0B0C1〉 〈A0B1C0〉 〈A1B0C0〉 〈A1B1C1〉
S+ L S+ L L/S S+ +1 Rejected Rejected Rejected
S+ L S− L L/S S− +1 Rejected Rejected Rejected
S− L S+ L L/S S− +1 Rejected Rejected Rejected
S− L S− L L/S S+ +1 Rejected Rejected Rejected
S+ L L S+ S+ L/S Rejected +1 Rejected Rejected
S+ L L S− S− L/S Rejected +1 Rejected Rejected
S− L L S+ S− L/S Rejected +1 Rejected Rejected
S− L L S− S+ L/S Rejected +1 Rejected Rejected
L S+ S+ L S+ L/S Rejected Rejected +1 Rejected
L S+ S− L S− L/S Rejected Rejected +1 Rejected
L S− S+ L S− L/S Rejected Rejected +1 Rejected
L S− S− L S+ L/S Rejected Rejected +1 Rejected
L S+ L S+ L/S S− Rejected Rejected Rejected −1
L S+ L S− L/S S+ Rejected Rejected Rejected −1
L S− L S+ L/S S+ Rejected Rejected Rejected −1
L S− L S− L/S S− Rejected Rejected Rejected −1

natural question is how to exclude them and perform a genuine
test the Mermin inequality with energy-time entanglement. In
this section we provide a solution based on a new configuration
which is a natural extension to three or more parties of the
scheme introduced in Ref. [5]. The advantage over the set up
in Fig. 1 discussed in Sec. II is that, in the case of perfect
detectors, with the new configuration the expected results
cannot be simulated with any local HV model.

The crucial difference between the setups of Figs. 1 and 2
is that while the geometry of the set up in Fig. 1 does not
prevent that the selection and rejection of events can be affected
by the local phase settings, the geometry of the setup in Fig. 2
prevents this possibility. Therefore, while in local HV models
for experiments using the setup of Fig. 1 the decision of being
detected or not can depend on the local setting, in any local
HV model for experiments using the setup of Fig. 2, the fact
that the photon is detected or not must be independent of the
local phase settings; and there are no such local HV models
reproducing the quantum predictions.

To illustrate this difference, first consider a selected event:
the three photons have been detected at time t0 (or at time t1).
Although the phase setting of φA, φB , and φC are, respectively,
in the backward light cones of the photons detected in Alice,
Bob, and Carol’s sides, as in the setup of Fig. 1, the key point
is that, in Fig. 2, different values of the phase settings cannot
cause a selected event to become a rejected event, since this
would require a mechanism to make one detection to “wait”
until the information about the setting in other side comes.
However, when this information has finally arrived, the phase
settings (both of them) have changed, so this information is
useless to base a decision on it.

On the contrary, for the setup of Fig. 2, there is no physical
mechanism preserving locality which can turn a selected
(rejected) event into a rejected (selected) event. The selected
events are independent of the local phase settings. For the
selected events, only the +1 or −1 decision can depend on
the phase settings. This is exactly the assumption under which

the Mermin inequality (1) and their generalizations to N > 3
parties are valid. Therefore, an experimental violation of (1)
using the setup of Fig. 2 and the postselection procedure
described before provides a conclusive (assuming perfect
detectors) test of local realism using energy-time (or time-bin)
entanglement.

IV. GENERATION OF N-quNit ENERGY-TIME
ENTANGLED STATES

A. Three-qutrit energy-time entangled states

An interesting feature of the setup in Fig. 2 is that it can
be extended to prepare N -quN it energy-time entangled states
with potential applications in quantum information processing.

FIG. 2. (Color online) Setup for preparing a three-qubit energy-
time GHZ state. All the beam splitters (BSs) are 50/50 BSs.
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FIG. 3. (Color online) Setup for preparing the state (4). BS1, BS2,
BS3 have reflection coefficient R = 1

3 , while BS4, BS5, BS6 have
R = 1

2 .

For instance, using the setup shown in Fig. 3, we can prepare
the three-qutrit state

|�〉 = 1√
3

(|111〉 + |222〉 + |333〉) (4)

by using a source emitting three photons simultaneously
at an unknown time and then postselecting the threefold
coincidences. The geometry of the setup is suitable for
three-qutrit Bell tests (i.e., is free of the problems discussed in
Sec. III).

The setup for performing one observer’s local measure-
ments is shown in Fig. 4. The three BSs in Fig. 4, written in
the basis |1〉, |2〉, |3〉, are given by

BSA
1 =

⎛
⎜⎜⎝

1 0 0

0 1√
2

eiα√
2

0 1√
2

− eiα√
2

⎞
⎟⎟⎠ , (5a)

BSA
2 =

⎛
⎜⎜⎝

√
2√
3

0 eiβ√
3

0 1 0
1√
3

0 −
√

2eiβ√
3

⎞
⎟⎟⎠ , (5b)

BSA
3 =

⎛
⎜⎜⎝

1√
2

eiγ√
2

0

1√
2

− eiγ√
2

0

0 0 1

⎞
⎟⎟⎠ . (5c)

Therefore, BSA
1 and BSA

3 are 50-50 BSs, while BSA
2 has a

reflection coefficient R = 1
3 . The action of the three BSs in

Fig. 4 corresponds to the following unitary operator:

M := BSA
3 BSA

2 BSA
1

= 1√
3

⎛
⎜⎜⎝

1
√

3eiγ +eiβ

2
1
2eiα(

√
3eiγ − eiβ)

1 −√
3eiγ +eiβ

2 − 1
2eiα(

√
3eiγ + eiβ)

1 −eiβ ei(β+α)

⎞
⎟⎟⎠ . (6)

FIG. 4. (Color online) Setup for the measurement of a qutrit state.
The reflection coefficients are given in (5a)–(5c).

By choosing β = π
3 , γ = −π

6 and α = π/3, we obtain

M = 1√
3

⎛
⎜⎝

1 1 1

1 ei 2π
3 ei 4π

3

1 ei 4π
3 ei 8π

3

⎞
⎟⎠ . (7)

By inserting the three phases φi , we obtain

M = 1√
3

⎛
⎜⎝

1 e−iφ2 e−iφ3

1 ei 2π
3 e−iφ2 ei 4π

3 e−iφ3

1 ei 4π
3 e−iφ2 ei 2π

3 e−iφ3

⎞
⎟⎠ . (8)

This measurement projects onto the basis

|1′〉 = M†|1〉 , |2′〉 = M†|2〉 , |3′〉 = M†|3〉 , (9)

given by

|1′〉 = 1√
3

(|1〉 + eiφ2 |2〉 + eiφ3 |3〉), (10a)

|2′〉 = 1√
3

(|1〉 + ei(φ2− 2π
3 )|2〉 + ei(φ3− 4π

3 )|3〉), (10b)

|3′〉 = 1√
3

(|1〉 + ei(φ2− 4π
3 )|2〉 + ei(φ3− 2π

3 )|3〉). (10c)

B. Generalization to N quNits

Interestingly, the setup can be extended to prepare N -quN it
energy-time entangled states with N > 3. For each particle we
use a scheme given in Fig. 5 to generate a quN it. Each mode
is sent to a different party Ai . Then, by using a scheme similar
to that proposed in Refs. [15,16] we can measure the quN it.

The BSs described in Fig. 6 can be set to produce the
following unitary transformation

U = 1√
N

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1

1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

1 ωN−1 ω2(N−1) · · · ω(N−1)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (11)
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FIG. 5. (Color online) Generation of N -particle quN it state. The
reflection coefficients are shown on the right side of the corresponding
BS.

where

ω = e
2πi
N . (12)

We have

Uij = ω(i−1)(j−1). (13)

With the phase shift we measure on the following basis:

|1′〉 = 1√
N

(|1〉 + eiφ2 |2〉 + · · · + eiφN |N〉), (14a)

|2′〉 = 1√
N

(|1〉 + ω̄eiφ2 |2〉 + · · · + ω̄N−1eiφN |N〉), (14b)

|3′〉 = 1√
N

(|1〉 + ω̄2eiφ2 |2〉 + · · · + ω̄2(N−1)eiφN |N〉), . . . ,
(14c)

|N ′〉 = 1√
N

(|1〉 + ω̄N−1eiφ2 |2〉 + · · · + ω̄(N−1)2
eiφN |N〉).

(14d)

FIG. 6. (Color online) Measurement of a quN it state. The
reflection coefficients are shown below the corresponding BS.

These states can be used for GHZ proofs of nonlocality
[17,18].

V. SOURCES WITH UNKNOWN EMISSION TIMES

So far, we have assumed that we have sources capable of
emitting three or more particles at the same unknown time.
However, to our knowledge, no such sources exist. This forces
us to use, in actual experiments, sources in which pairs of
particles are emitted at different unknown times. The use
of these sources does not solve the problem described in
Sec. III but makes the problem more complex to analyze. The
conclusion is still the same: Franson-like Bell experiments
admit local HV models reproducing the quantum predictions,
even when we use these sources. The aim of this section
is to show that these sources can be used with the schemes
introduced in Sec. IV, and still local HV models reproducing
the quantum predictions are impossible.

For instance, in order to test the Mermin inequality on
three-photon GHZ state we would need a (nonexistent) source
emitting three photons at the same unknown time. However,
a feasible realization is the one illustrated in Fig. 7. A
femtosecond pulsed laser (with very low coherence time)
is injected into a Mach-Zender (MZ) interferometer before
shining the nonlinear crystal, from which two independent
pairs are emitted at different times. The rest of the setup is
similar to the one described in Sec. IV.

If t0(t1 = t0 + δt) are the arrival time of the short (long)
arm pump pulse, where δt is the path difference and if the two
photon pairs are (1, 2) and (3, 4), then, generated state is given
by

|ψ〉 = 1
2 (|t0〉1|t0〉2|t0〉3|t0〉4 + |t1〉1|t1〉2|t1〉3|t1〉4

+ |t0〉1|t0〉2|t1〉3|t1〉4 + |t1〉1|t1〉2|t0〉3|t0〉4). (15)

Note that if the four photons could be generated at the same
time, we would have only the first two terms in (15). The latter
two terms contribute to events that are detected on different
sides and are not coincident. In order to discard them, we
should shorten the coincidence windows.

Now the question is whether the selected (rejected) events
could have been rejected (selected) events for a different value

FIG. 7. (Color online) Realistic setup for a test of the three-party
Mermin inequality with energy-time entangled photons.
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of one of the local settings. The key point to see that this cannot
happen is to remember that photons 1 and 2 (3 and 4), when
the four photons arrive at four different locations, are always
detected at the same time. Then, only a nonlocal mechanism
can change the arrival time of both photons due to a different
local setting in one of the photons. In principle, the detection
of photon 1 at time t0 or t1 could depend of the local setting.
The problem for any local HV model reproducing the quantum
predictions is that photon 2 should be detected at the same time,
and this requires nonlocal communication. Therefore, the use
of these sources do not cause any fundamental problem if the
detectors are perfect.

VI. CONCLUSIONS

Franson’s energy-time entanglement was a great achieve-
ment because it provided a new experimentally feasible
method to generate photonic entanglement. However, the fact
that (without supplementary assumptions) the outcomes of
actual Bell-CHSH experiments, and even those of ideal ex-
periments, can be reproduced with local HV models weakens
the power of the idea. In a previous article [5], we proposed
a way to solve this problem which has been implemented

in actual experiments. Then, a natural question is whether
the same problem affects previously proposed extensions of
Franson’s setup to the multipartite case. It does. In this article,
we have shown how to extend our previous proposal to fix
the problem in the multipartite case and discussed possible
applications of this extension. Specifically, we have shown
that, in principle, there is no fundamental obstacle to perform
experimental tests of the N -party Bell inequality (N � 3)
proposed by Mermin [11] with energy-time entangled photons
prepared in N -qubit GHZ states and how to produce a class of
N -particle N -level entangled states with potential applications
in quantum information processing, using energy-time.

ACKNOWLEDGMENTS
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