
One-way quantum computation with two-photon multiqubit cluster states

Giuseppe Vallone,1,* Enrico Pomarico,1,† Francesco De Martini,1,2,* and Paolo Mataloni1,*
1Dipartimento di Fisica dell’Universitá Sapienza di Roma and Consorzio Nazionale Interuniversitario per le Scienze

Fisiche della Materia, Roma, 00185 Italy
2Accademia Nazionale dei Lincei, via della Lungara 10, Roma 00165, Italy

�Received 24 July 2008; published 30 October 2008�

We describe the application of four-qubit cluster states, built on the simultaneous entanglement of two
photons in the degrees of freedom of polarization and linear momentum, for the realization of a complete set
of basic operations of one-way quantum computation. These consist of arbitrary single-qubit rotations, either
probabilistic or deterministic, and simple two-qubit gates, such as a controlled-NOT �CNOT� gate for equatorial
qubits and a universal controlled-phase gate �controlled-Z or CZ� gate acting on arbitrary target qubits. Other
basic computation operations, such as the Grover’s search and the Deutsch’s algorithms, have been realized by
using these states. In all the cases we obtained a high value of the operation fidelities. These results demon-
strate that cluster states of two photons entangled in many degrees of freedom are good candidates for the
realization of more complex quantum computation operations based on a larger number of qubits.
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I. INTRODUCTION

The relevance of cluster states in quantum information
and quantum computation �QC� has been emphasized in sev-
eral papers in recent years �1–11�. By these states significant
tests of quantum nonlocality, which are more resistant to
noise and show significantly larger deviations from classical
bounds can be realized �4,12–14�.

Besides that, cluster states represent also the basic re-
source for the realization of a quantum computer operating in
the one-way model �1�. In the standard QC approach any
quantum algorithm can be realized by a sequence of single-
qubit rotations and two-qubit gates, such as controlled-NOT

�CNOT� and controlled-PHASE �CPHASE� on the physical qu-
bits �15–17�, while deterministic one-way QC is based on the
initial preparation of the physical qubits in a cluster state,
followed by a temporally ordered pattern of single-qubit
measurements and feed-forward �FF� operations �1�. By ex-
ploiting the correlations existing between the physical qubits,
unitary gates on the so-called “encoded” �or logical� qubit
�5� are realized. In this way, nonunitary measurements on the
physical qubits correspond to unitary gates on the logical
qubits. It is precisely this nonunitarity of the physical process
that causes the irreversibility nature �i.e., its “one-way” char-
acter� of the model. Hence the difficulties of standard QC,
related to the implementation of two qubit gates, are trans-
ferred to the preparation of the state.

The FF operations that depend on the outcomes of the
already measured qubits and are necessary for a deterministic
computation, can be classified in two classes:

The intermediate feed-forward measurements, consisting
of the choice of the measurement basis.

The Pauli matrix feed-forward corrections on the final
output state.

The first experimental demonstrations of one-way QC, ei-
ther probabilistic or deterministic, were given by using four-
photon cluster states generated via postselection by sponta-
neous parametric down conversion �SPDC� �5,8�. The
detection rate in those experiments, approximately 1 Hz, was
limited by the fact that four-photon events in a standard
SPDC process are rare. Moreover, four-photon cluster states
are characterized by limited values of fidelity, while efficient
computation requires the preparation of highly faithful states.

More recently, by entangling two photons in more degrees
of freedom, we created four-qubit cluster states at a much
higher level of brightness and fidelity �14�. Precisely, this
was demonstrated by entangling the polarization ��� and lin-
ear momentum �k� degrees of freedom of one of the two
photons belonging to a hyperentangled state �18,19�. More-
over, the possibility of working with only two photons re-
duces the problems related to the limited quantum efficiency
of detectors. Because of these characteristics, two-photon
four-qubit cluster states are suitable for the realization of
high speed one-way QC �20–22�.

In this paper we give a detailed description of the basic
QC operations performed by using two-photon four-qubit
cluster state, such as arbitrary single qubit rotations, the
CNOT gate for equatorial qubits and a CPHASE gate. We veri-
fied also the equivalence existing between the two degrees of
freedom for qubit rotations, by using either k or � as the
output qubit. Finally, we also show the realization of two
important basic algorithms by our setup, namely the Grov-
er’s search algorithm and the Deutsch’s algorithm. The
former identifies the item tagged by a “black box,” while the
latter allows to distinguish in a single run if a function is
constant or balanced.

The paper is organized as follows. In Sec. II we review
the one-way model of QC realized through single-qubit mea-
surements on a cluster state. We also describe the basic
building blocks that can be used to implement any general
algorithm. In Sec. III a description of the source used to
generate the two-photon four-qubit cluster state by manipu-
lating a polarization-momentum hyperentangled state is pre-
sented. We describe in Sec. IV three basic operations realized
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by our setup: a generic single qubit rotation, a CNOT gate for
equatorial target qubit and a CPHASE gate for fixed control
and arbitrary target qubit. In Sec. V two explicit examples of
quantum computation are given by the realization of the
Grover’s search algorithm and the the Deutsch’s algorithm.
Finally, the future perspectives of this research are discussed
in the conclusions of Sec. VI.

II. ONE-WAY COMPUTATION

Cluster states are quantum states associated to
n-dimensional lattices that, in the case n=2 represent a uni-
versal resource for QC �23�. The explicit expression of a
cluster state is found by associating to each dot j of the
lattice �see Fig. 1� a qubit in the state �+ � j =

1
�2

��0� j + �1� j� and
to each link between two adjacent qubits i and j, a CPHASE

gate CZij:

CZij = �0�i�0� � 1 j + �1�i�1� � �z
�j�. �1�

In the case of a lattice L with N sites, the corresponding
cluster state is given by the expression

��N
L� 	 
 �

i,j linked
CZij�� + �N, �2�

where �+ �N	�+ �1 � �+ �2¯ � �+ �N. Some explicit examples
of cluster states are the three-qubit linear cluster,

��3
lin� =

1
�2

�� + �1�0�2� + �3 + �− �1�1�2�− �3� , �3�

the four-qubit linear �or horseshoe� cluster

��4
lin� = ��4

�� = ��4
��

=
1

2
�� + �1�0�2�0�3� + �4 + � + �1�0�2�1�3�− �4

+ �− �1�1�2�0�3� + �4 + �− �1�1�2�1�3�− �4� , �4�

corresponding to four qubits linked in a row �see Fig. 4�I��
and the four-qubit box cluster

��4
�� =

1

2
��0�1� + �2�0�3� + �4 + �0�1�− �2�1�3�− �4

+ �1�1�− �2�0�3�− �4 + �1�1� + �2�1�3� + �4� , �5�

corresponding to four qubits linked in a square �see Fig. 10
�left��.

For a given cluster state, the measurement of a generic
qubit j performed in the computational basis 
�0� j , �1� j� �Fig.
1�a�� simply corresponds to remove it and its relative links
from the cluster �Fig. 1�b��. In this way we obtain, up to
possible �z corrections, a cluster state with N−1 qubits,

��N
L� → �

k�Nj

��z
�k��sj��N−1

L\
j�� , �6�

where sj =0 if the measurement output is �0� j, while sj =1 if
the measurement output is �1� j. In the previous equation N j
stands for the set of all sites linked with qubit j. Then, by
starting from a large enough square lattice, it is possible to
create any kind of cluster state associated to smaller lattices.
In the following figures we will indicate with a red cross the
measurement of a physical qubit performed in the computa-
tional basis, as shown in Fig. 1.

Let us now explain the computation process. Each algo-
rithm consists of a measurement pattern on a specific cluster
state. This pattern has a precise temporal ordering. It is well
known that one-way computation does not operate directly
on the physical qubits of the cluster state on which measure-
ments are performed. The actual computation takes place on
the so-called encoded qubits, written nonlocally in the cluster
through the correlation between physical qubits. We will use
i , j=1, . . . ,N for the physical qubits and a ,b=1, . . . ,M for
the encoded qubits �M �N�. Some physical qubits �precisely
M� represent the input qubits of the computation �all pre-
pared in the state �+ �E� and the corresponding dots can be
arranged at the left of the graph. We then measure N−M
qubits, leaving M physical qubits unmeasured, hence the out-
put of computation corresponds �up to Pauli errors� to the
unmeasured qubits. It is possible to arrange the position of
the dots in such a way that the time ordering of the measure-
ment pattern goes from left to right.

The computation proceeds by the measurement performed
in the basis

Bj��� 	 
��+� j, ��−� j� , �7�

where ���� j 	
1
�2

�ei�/2�0� j �e−i�/2�1� j�. Here sj =0 or sj =1 if
the measurement outcome of qubit j is ��+� j or ��−� j, respec-
tively. The specific choice of � for every physical qubit is
determined by the measurement pattern. Note that the choice
of the measurement basis for a specific qubit can also depend
on the outcome of the already measured qubits: these are
what we call feed-forward measurements �type �i��. In gen-
eral, active modulators �for example, Pockels cells in case of
polarization qubit� are required to perform FF measurements.
However, in some cases, when more than one qubit is en-
coded in the same particle through different degrees of free-
dom �DOF’s�, it is possible to perform FF measurement
without the need of active modulators. This will be discussed
in Sec. IV, when the measurement basis of the generic qubit
j, encoded in one particle, depends only on the outputs of
some other qubits encoded in the same particle.

One-way computation can be understood in terms of some
basic operations, the so-called cluster building blocks �CBB�
�see Fig. 2�. By combining different CBB it is possible to
realize computation algorithms of arbitrary complexity �24�.
We introduce here a convenient notation: by writing explic-

�� ��

FIG. 1. �Color online�. Effect of measurements on a generic
cluster state. �a� Measurements in the computational basis 
�0�, �1��
are indicated by red crosses. �b� The cluster state after the measure-
ments of some qubits in the computational basis.
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itly a state ��� close to a dot j �see Fig. 2�, we indicate that
the total state could be equivalently obtained by preparing
qubit j in the state ��� j before applying the necessary CZ
gates.

CBB1: Qubit rotation. Consider two qubits linked together
like CBB1 shown in Fig. 2. Here the first qubit is initially
prepared in the state ��� and the second qubit is arbitrary
linked with other dots. By measuring qubit 1 in the basis
B1��� we remove it from the cluster but we transfer the in-
formation into qubit 2 leaving its links unaltered. This cor-
responds to the following operation on the encoded qubit
���E

���E → ����E 	 �x
s1HRz������E, �8�

where H is the Hadamard gate H=1 /�2��x+�z� and Rz���
=e−i��z/2 is a rotation around the z axis in the Bloch sphere.
The �x operations depends on the measurement output �s1�
of the first qubit. This operation can be understood by noting
that by measuring the first qubit of the state CZ12���1�+ �2 in
the B1��� basis we obtain ����2.

This simple algorithm can be repeated by using two CBB1
in a row. By measuring qubit 1 in the B1��� bases the en-
coded qubit is transformed into ����E and the encoded qubit
moves from left to right within the cluster. By measuring
qubit 2 in the B2�	� basis the encoded qubit is now written in
qubit 3 as ����E,

����E 	 �x
s2HRz�	��x

s1HRz������E. �9�

In this case the computation can be understood by observing
that by the measurement of qubits 1 and 2 of the state
CZ12CZ23���1�+ �2�+ �3 in the basis B1��� and B2�	�, we ob-
tain ����3.

CBB2: CPHASE gate. Consider two qubits linked in a col-
umn. This block simply performs a CPHASE gate �CZ� be-
tween the two qubits.

CBB3: CPHASE gate+rotation. With three qubits in a col-
umn, the measurement of the second qubit in the basis
B2�� /2� is equivalent to remove it from the cluster and to

transfer the information to qubits 1 and 3. Precisely, this
measurement realizes a CPHASE gate followed by two single-
qubit rotations Rz�−� /2� on the logical qubit �see Fig. 2�.

By combining these CBB we can obtain any desired
quantum algorithm, expressed in general as

�
out� = U�Ug�
a=1

M

� + �a, �10�

where M is the number of logical qubits, Ug is the unitary
gate that the algorithm must perform, and U� correspond to
the so-called Pauli errors corrections �24,25�,

U� = �
a=1

M

��x
�a��xa��z

�a��za. �11�

The numbers xa, za=0,1 depend on the outcomes of all the
single �physical� qubit measurements and determine the FF
corrections �type �ii�� that must be realized at the end of the
measurement pattern to achieve deterministic computation.
By the symbol �z

�a� we indicate that the Pauli matrix �z acts
on the logical qubit a. Note that if the output of the algorithm
is one among the 2M states of the computational basis, i.e.,
�a=1

M �ra�a �ra=0,1�, only the �x’s of the unitary U� act non-
trivially by flipping some qubits. The Pauli errors are then
reduced to

U�� = �
a=1

M

��x
�a��xa. �12�

In this way the “errors” can be simply corrected by relabel-
ing the output, and with no need of active feed-forward cor-
rections on the quantum state. If, by measuring the output
qubits, we obtain the result �a=1

M �sa�a �sa=0 or sa=1� we must
interpret it as �a=1

M �sa � xa�a with the Pauli errors given by
Eq. �12�. This relabeling operation can be performed, for
example, by an external classical computer.

III. EXPERIMENTAL SETUP

In our experiment we generated two-photon four-qubit
cluster states by starting from polarization ���-momentum
�k� hyperentangled photon pairs obtained by SPDC �see Fig.
3�. The hyperentangled states �����	����� � �
��k were
generated by a 	-barium-borate �BBO� type-I crystal
pumped in both sides by a cw Argon laser beam �
p
=364 nm� �see Fig. 3�. The detailed explanation of the hy-
perentangled state preparation was given in previous papers
�18,26�, to which we refer for details. In the above expres-
sion of ����� we use the Bell states

����� =
1
�2

��H�A�H�B � �V�A�V�B� ,

�
��k =
1
�2

����A�r�B � �r�A���B� , �13�

with �H� , �V� corresponding to the horizontal �H� and vertical
�V� polarization and ��� , �r� referring to the left ��� or right

FIG. 2. �Color online�. Cluster building blocks �CBB�. For each
CBBi we indicate the measurement on the physical cluster �left� and
the corresponding operation on the logical qubits �right�.
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�r� paths of the photon A �Alice� or B �Bob� �see Fig. 3�. In
�����, the first signs refer to the polarization state ����� and
the second ones to the linear momentum state �
��k.

Starting from the state ��+−�= ��+�� � �
−�k and applying
a CPHASE �CZ� gate between the control �kA� and the target
��A� qubits of photon A, the cluster state

�C4� =
1

2
��H��A�Hr�B − �Hr�A�H��B + �Vr�A�V��B

+ �V��A�Vr�B�

=
1
�2

��+�����A�r�A −
1
�2

��−���r�A���A

=
1
�2

�H�A�H�A�
+�k +
1
�2

�V�A�V�A�
−�k �14�

is generated. In the experiment, the CZ gate is realized by a
zero-order half wave �HW� plate inserted on the rA mode,
and corresponds to introduce a � phase shift on the vertical
polarization of the rA output mode. It is worth noting that, at
variance with the case of four-photon cluster states, the state
�14� is created without any kind of postselection �33�. By
using the correspondence �H�↔ �0�, �V�↔ �1�, ���↔ �0�,
�r�↔ �1�, the generated state �C4� is equivalent to ��4

lin�,
��4

��, ��4
��, or ��4

�� up to single qubit unitaries,

�C4� = U1 � U2 � U3 � U4��4
lin� 	 U��4

lin� . �15�

With ��4
lin� and �C4� we refer to the cluster state expressed in

the “cluster” and “laboratory” basis, respectively. The ex-
plicit expression of the unitaries Uj depends on the specific
ordering of the physical qubits �kA, kB, �A, and �B� and in
the following will be indicated in each case. The change of
basis is necessary to know which are the correct measure-
ments needed in the actual experiment. In general, if the
chosen algorithm requires a measurement in the basis ���� j
on qubit j, the actual measurement basis in the laboratory is
given by Uj���� j.

In order to characterize the generated cluster state we
adopted the stabilizer operator formalism �27�. It can be
shown �28� that

�C4��C4� =
1

16�
k=1

16

Sk, �16�

where Sk are the so-called stabilizer operators Sk�C4�= �C4�,
∀k=1, . . . ,16 �see Table I�. The fidelity of the experimental
cluster �exp can be measured by

F�C4� = Tr��exp�C4��C4�� =
1

16�
k=1

16

Tr��expSk� , �17�

i.e., by measuring the expectation values of the stabilizer
operators. We show in Table I the stabilizer operators for �C4�
and the corresponding experimental expectation values. The
measured fidelity was F=0.880�0.013, demonstrating the
high purity level of the generated state. Cluster states were
observed at 1 kHz detection rate by using interference filters
with bandwidth �
=6 nm for photon pair detection. In Table
I we use the following notation for polarization:

Zj = �H� j�H� − �V� j�V� ,

Y j = i�V� j�H� − i�H� j�V� ,

Xj = �H� j�V� + �V� j�H�, j = A,B , �18�

and linear momentum operators

zj = ��� j��� − �r� j�r� ,

yj = i�r� j��� − i��� j�r� ,

xj = ��� j�r� + �r� j���, j = A,B , �19�

for either Alice �A� or Bob �B� photons.

��

��

��

��

����
���

�

�
�

�
���
���� �

��
	


	���
���
����� ������

������ �
������ �

�
��

FIG. 3. �Color online� Source of two-photon four-qubit cluster
state. The hyperentangled states ����� arises from the simulta-
neous entanglement on polarization and linear momentum. Polar-
ization entanglement is obtained by pumping in two opposite direc-
tions a BBO type-I crystal and by double passage of the SPDC pair
through a 
 /4 wave plate. Mode selection performed by a four hole
screen allows linear momentum entanglement. The half wave plate
HW transforms the hyperentangled state ��+−� into the cluster state
�C4�.

TABLE I. Expectation values of the stabilizer operators Si.

Stabilizers Tr��expSk�

S1 −zAzB 0.9941�0.0011

S2 −xAxBZA 0.8486�0.0031

S3 zAXAXB 0.9372�0.0035

S4 ZAZB 0.9105�0.0024

S5 −yAyBZA 0.8386�0.0032

S6 −zBXAXB 0.9354�0.0035

S7 −ZAZBzAzB 0.8963�0.0044

S8 YAXBxAyB 0.7455�0.0042

S9 −ZByAyB 0.8215�0.0034

S10 XAYBxAYB 0.8139�0.0037

S11 −YAXByAxB 0.7944�0.0037

S12 −xAxBZB 0.8498�0.0031

S13 −YAYBzA 0.9350�0.0036

S14 YAYBzB 0.9346�0.0037

S15 −XAYByAxB 0.8186�0.0035

S16 1 1
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IV. BASIC OPERATIONS WITH TWO-PHOTON CLUSTER
STATE

In this section we describe the implementation of simple
operations performed by the generated four-qubit two-photon
cluster state.

A. Single-qubit rotations

In the one-way model a three-qubit linear cluster state
�simply obtained by the four-qubit cluster by measuring the
first qubit� is sufficient to realize an arbitrary single-qubit
transformation �34� ��in�→Rx�	�Rz�����in�, where Rz���
=e−i��z/2 and Rx�	�=e−i	�x/2.

The algorithm consists of two CCB1 on a row. Precisely,
by using the four-qubit cluster expressed in the cluster basis
the following measurement pattern must be followed �see
Fig. 4�:

�1� A three-qubit linear cluster is generated by measuring
the first qubit in the computational basis 
�0�1 , �1�1�. As al-
ready stated in Sec. II this operation removes the first qubit
from the cluster and generates ��z

�2��s1��3
lin�. The input logical

qubit ��in� is then encoded in qubit 2. If the outcome of
the first measurement is �0�1 then ��in�= �+ �, otherwise
��in�= �−�.

�II� Measuring qubit 2 in the basis B2���, the logical qubit
�now encoded in qubit 3� is transformed into ����
= ��x�s2HRz�����in�, with Rz���=e−�i/2���z.

�III� Measurement of qubit 3 is performed in the basis

B3�	� if s2 = 0,

B3�− 	� if s2 = 1.

This represents a FF measurement �type �i�� since the choice
of measurement basis depends on the previous outputs. This
operation leaves the last qubit in the state ��out�
= ��x�s3HRz��−1�s2	�����.

The above sequence indicates that the measurement result
in each step determines the measurement basis in the subse-
quent steps. Hence, in the case of two-photon, four-qubit
cluster states, when more qubits are encoded in a single pho-

ton, the process proceeds in a determinstic way thanks to the
FF measurements. At the end of the process, by using some
simple Pauli matrix algebra, the output state �encoded in qu-
bit 4� can be written as

��out� = �x
s3�z

s2Rx�	�Rz�����in� . �20�

with Rx�	�=e−�i/2�	�x. In this way, by suitable choosing � and
	, we can perform any arbitrary single-qubit rotation ��in�
→Rx�	�Rz�����in� up to Pauli errors ��x

s3�z
s2� that should be

corrected by proper feed-forward operations �type �ii�� to
achieve a deterministic computation �8�.

In our case we applied this measurement pattern by con-
sidering different ordering of the physical qubits. Precisely,
we encoded the output qubit either in polarization or linear
momentum of photon B, demonstrating the QC computa-
tional equivalence of the two DOF’s. The measurement ap-
paratus is sketched in Fig. 5. The k modes corresponding to
photons A or B are matched respectively, on the up and down
side of a common symmetric beam splitter �BS� �see inset�,
which also can be finely adjusted in the vertical direction
such that one or both photons don not pass through it. Polar-
ization analysis is performed by a standard quantum tomog-
raphy apparatus D� �
 /4, 
 /2, and polarizing beam splitter
PBS�. Depending of the specific measurement the HWs ori-
ented at 22.5° are inserted to perform the Hadamard opera-
tion H in the apparatus D�. They are used together with the

 /4 in order to transform the 
��+��A

, ��−��A
� states into lin-

early polarized states. Two thin glass plates before the BS
allow to set the basis of the momentum measurement for
each photon.

FIG. 4. �Color online� Measurement pattern for single-qubit ro-
tations. Top: Arbitrary single-qubit rotations on a four-qubit linear
cluster state are carried out in three steps �I, II, III�. In each mea-
surement, indicated by a red cross, the information travels from left
to right. Bottom: Equivalent logical circuit.

�� ��

������ �
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����� ���

���� �

��� ��� �

�����

��

�	�
�	�

�




���

��

FIG. 5. �Color online� Measurement setup for photons A and B.
Momentum qubits kA and kB are measured by two thin glasses
��A ,�B�, acting as phase shifters and inserted before a common
50:50 BS. Polarization qubits �A and �B are measured by standard
tomographic setup �D��. BS and D� outputs are indicated by sj

=0,1, where the index j refers to the corresponding DOF. FF cor-
rection apparatus for deterministic QC �used in our experiment only
with ordering �a�� is given by a 35 m length single mode fiber and
two Pockels cells ��x ,�z� driven by the output signals of detector
a1, a3, a4. Dashed lines for H, BS, and FF correction apparatus
indicate that these devices can be inserted or not in the setup de-
pending on the particular measurement �see text for details�. Inset:
tomographic apparatus D� and spatial mode matching on the BS.
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Let us consider the following ordering of the physical
qubits �see Eq. �15��:

�a� �1,2,3,4� = �kB,kA,�A,�B� ,

U = �xH � �z � 1 � H . �21�

The output state, encoded in the polarization of photon B,
can be written in the laboratory basis as

��out��B
= �z

s�A�x
skAHRx�	�Rz�����in� , �22�

where the H gate derives from the change between the clus-
ter and laboratory basis. This also implies that the actual
measurement bases are BkB

�0� for the momentum of photon
B �qubit 1� and BkA

��+�� �i.e., ����kA
� for the momentum

of photon A �qubit 2�. According to the one-way model, the
measurement basis on the third qubit ��A� depends on the
results of the measurement on the second qubit �kA�. These
are precisely what we call FF measurements �type �i��. In our
scheme this simply corresponds to measure �A in the bases
B�A

�	� or B�A
�−	�, depending on the BS output mode �i.e.,

skA
=0 or skA

=1�. These deterministic FF measurements are a
direct consequence of the possibility to encode two qubits
�kA and �A� in the same photon. As a consequence, at vari-
ance with the case of four-photon cluster states, in this case
active feed-forward measurements �that can be realized by
adopting Pockels cells� are not required, while Pauli errors
corrections are in any case necessary for deterministic QC.

We first realized the experiment without FF corrections
�in this case we did not use the retardation fiber and the
Pockels cells shown in the setup�. The results obtained for
s2=s3=0 �i.e., when the computation proceeds without er-
rors� with ��in�= �+ � are shown in Fig. 6�a�. We show on the
Bloch sphere the experimental output qubits and their pro-
jections on the theoretical state HRx�	�Rz����+ � for the
whole set of � and 	. The corresponding fidelities are given
in Table II. We also performed the tomographic analysis
�shown in Figs. 6�b�–6�d�� on the output qubit �B for all the
possible combinations of s2 and s3 and for the input qubit
��in�= �� �. The high fidelities obtained in these measure-
ments indicate that deterministic QC can be efficiently
implemented in this configuration by Pauli error active FF
corrections.

They were realized by using the entire measurement ap-
paratus of Fig. 5. Here two fast driven transverse LiNbO3
Pockels cells ��x and �z� with risetime=1 ns and V
/2
�1 kV are activated by the output signals of detectors ai
�i=1,3 ,4� corresponding to the different values of s�A

and
skA

. They perform the operation �z
s�A�x

skA on photon B,
coming from the output skB

=0 of BS and transmitted through
a single mode optical fiber. Note that no correction is needed
when photon A is detected on the output a2 �s�A

=skA
=0�.

Temporal synchronization between the activation of the high
voltage signal and the transmission of photon B through the
Pockels cells is guaranteed by suitable choice of the delays
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FIG. 6. �Color online� Polarization ��B� output Bloch vectors of
single-qubit rotations. The experimental results �arrows� are shown
with their projections on theoretical directions �dashed lines�. Ar-
row colors correspond to different values of � and 	 �see Table II�.

TABLE II. Polarization ��B� experimental fidelities �F� of single-qubit rotation output states for different
values of � and 	. The first column indicates the corresponding vector in Fig. 6. Each datum is obtained by
the measurements of the different Stokes parameters, each one lasting 10 s.

No. � 	 F �s2=0,s3=0� F �s2=0,s3=1�

1 0 � /2 0.908�0.006 0.860�0.008

�B 2 −� /2 0 0.942�0.004 0.946�0.004

3 −� /2 � /2 0.913�0.005 0.929�0.004

4 −� /2 −� /4 0.899�0.007 0.898�0.006

No. � 	 F �s2=1,s3=0� F �s2=1,s3=1�

1 0 � /2 0.932�0.005 0.935�0.006

�B 2 −� /2 0 0.873�0.006 0.847�0.006

3 −� /2 � /2 0.851�0.007 0.848�0.007

4 −� /2 −� /4 0.928�0.007 0.932�0.007
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D. We used only one BS output of photon B, namely skB
=0, in order to perform the algorithm with initial state ��in�
= �+ �. The other BS output corresponds to the algorithm
starting with the initial state ��in�= �−�. By referring to Fig. 5,
each detector aj corresponds to a different value of skA

and
s�A

. Precisely, a1 corresponds to skA
=0 and s�A

=1 and acti-
vates the Pockels cell �z �see Eq. �22��. Detector a2 corre-
sponds to skA

=s�A
=0, i.e., the computation without errors

and thus no Pockels cell is activated. Detector a3 corresponds
to skA

=1, s�A
=0, and activates �x, while a4 corresponds to

skA
=s�A

=1 and both �x and �z are activated.
In Fig. 7 the output state fidelities obtained with and/or

without active FF corrections �i.e., turning on and/or off the
Pockels cells� are compared for different values of � and 	.
The expected theoretical fidelities in the no-FF case are also
shown. In all the cases the computational errors are corrected
by the FF action, with average measured fidelity F
=0.867�0.018. In the experiment the overall repetition rate
was about 500 Hz, which is more than two orders of magni-
tude larger than one-way single qubit-rotation realized with
four-photon cluster states.

We also demonstrated the computational equivalence of
the two DOF’s of photon B by performing the same algo-
rithm with the following qubit ordering:

�b� �1,2,3,4� = ��B,�A,kA,kB� ,

U = H � �z � �x � �zH . �23�

In this case we used the momentum of photon B �kB� as
output state. The explicit expression of the output state
��out�kB

in the laboratory basis is now ��out�kB
= ��z�s3��x�s2�zHRx�	�Rz�����in�. By using only detectors a2,
a3, b1, b2 in Fig. 5 we measured ��out�kB

for different values
of � �which correspond in the laboratory to the polarization
measurement bases �����A

� and 	=0 �which correspond in

the laboratory to the momentum bases �−	��kA
�. The first

qubit ��B� was always measured in the basis �� ��B
. The kB

tomographic analysis for all the possible values of s2	s�A
and s3	skA

are shown in Fig. 8, i.e., for different values of
s1	s�B

. We obtained an average value of fidelity F�0.9
�see Table III�. In this case the realization of deterministic
QC by FF corrections could be realized by the adoption of
active phase modulators. The ���-�k� computational equiva-
lence and the use of active feed forward show that the mul-
tidegree of freedom approach is feasible for deterministic
one-way QC.

FIG. 7. �Color online� Output
fidelities of the single-qubit rota-
tion algorithm with �FF, black
�blue� columns� or without �no FF,
gray �orange� columns� feed for-
ward. In both cases, the four col-
umns of the histograms refer to
the measurement of the output
state �encoded in the polarization
of photon B� by detector b1 in co-
incidence with a1 , . . . ,a4, respec-
tively. Grey dashed columns
�THEO� correspond to theoretical
fidelities in the no-FF case.
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FIG. 8. �Color online� Momentum �kB� output Bloch vectors of
single-qubit rotations. The experimental results �arrows� are shown
with their projections on theoretical directions �dashed lines�. Ar-
row colors correspond to different values of � and 	 �see Table III�.
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B. C-NOT gate

The four-qubit cluster allows the implementation of non-
trivial two-qubit operations, such as the CNOT �GCNOT� gate.
Precisely, a CNOT gate acting on a generic target qubit be-
longing to the equatorial plane of the Bloch sphere �i.e., a
generic state of the form 1

�2
��0�+ei��1��� can be realized by

the four-qubit horseshoe �180° rotated� cluster state ��4
lin�

�see Eq. �4��. Let us consider Fig. 9 �top�. The measurement
of qubits 1 and 4 realizes a CNOT gate �the logical circuit
shown in figure� between the control �+ �c and target �+ �t
qubit. By measuring the qubit 1 in the basis 
�0�1 , �1�1� or
�� �1 we realized on the control input qubit �+ �c the gate
O=1 or O=H, respectively. The measurement of qubit 4 in
the basis ����4 realizes the gate HRz��� on the target input
qubit �+ �t. The algorithm is terminated by the vertical link
performing a CZ operation. The input state �+ �c � �+ �t is
transformed, in case of no “errors” �i.e., s1=s4=0�, into
��out�=GCZct

�O�+ �c � HtRz����+ �t�=HtGCNOT�O�+ �c

� Rz����+ �t�. This circuit realizes the CNOT gate �up to the
Hadamard Ht� for arbitrary equatorial target qubit �since

Rz��� � + �= e−i�/2

�2
��0�+ei��1��� and control qubit �0�, �1�, or ���

depending on the measurement basis of qubit 1.
The experimental realization of this gate is performed by

adopting the following ordering between the physical qubits:

�c� �1,2,3,4� = �kA,kB,�B,�A� ,

U = �zH � �x � 1 � H . �24�

In this case the control output qubit is encoded in the mo-
mentum kB, while the target output is encoded in the polar-
ization �B. In order to compensate the Ht gate arising from
the cluster algorithm we inserted two Hadamard in the po-
larization analysis of the detectors b1 and b2 �see Fig. 5�. The
output state in the laboratory basis is then written as

��out� = ���s4�x
�c�GCNOT�O�z

s1� + �c � Rz���� + �t� , �25�

where all the possible measurement outcomes of qubits 1 and
4 are considered. The Pauli errors are �=�z

�c��z
�t�, while the

matrix �x
�c� is due to the changing between cluster and labo-

ratory basis.
By measuring kA in the basis 
���kA

, �r�kA
� we perform the

O=H operation on the control qubit. By looking at Eq. �25�,
this means that if skA

	s1=0 �skA
=1� the control qubit is �1�

��0��, while the target qubit is Rz����+ �t ��xRz����+ �t�. In this
case the gate acts on a control qubit �0� or �1�, without any
superposition of these two states. We first verified that the
gate acts correctly in this situation. In Table IV �top� we
report the experimental fidelities �F� of the output target qu-
bit �B for two different values of � and for the two possible
values of s4. The high values of F show that the gate works
correctly when the control qubit is �0� or �1�.

In the second step we verified that the gate works cor-
rectly with the control qubit in a superposition of �0� and �1�.
This was realized by measuring the qubit kA in the basis
�� �kA

and performing the O=1 operation on the control qu-
bit. The output state is written �without errors� as ��out�
= �1�c � Rz����+ �t+ �0�c � �xRz����+ �t. In Table IV �bottom�
we show the values of the experimental fidelities of the target
qubit �B, corresponding to the measurement of the output

TABLE III. Momentum �kB� experimental fidelities �F� of
single-qubit rotation output states for different values of � and 	.
The first column indicates the corresponding vector in Fig. 8. Each
datum is obtained by the measurements of the different Stokes pa-
rameters, each one lasting 10 s.

No. ��	=0� F �s2=0,s3=0� F �s2=0,s3=1�

1 � /4 0.998�0.005 0.961�0.006

kB 2 0 0.961�0.003 0.971�0.003

3 � /2 0.879�0.006 0.895�0.005

4 −� /4 0.833�0.007 0.956�0.006

No. ��	=0� F �s2=1,s3=0� F �s2=1,s3=1�

1 � /4 0.919�0.008 0.857�0.009

kB 2 0 0.944�0.0044 0.943�0.005

3 � /2 0.799�0.007 0.918�0.005

4 −� /4 0.946�0.008 0.872�0.008

FIG. 9. �Color online� CNOT and CPHASE gates by the four-qubit
cluster. �Top� CNOT gate realization via measurement of qubits 1, 4
on the horseshoe cluster and equivalent circuit. �Bottom� CPHASE

gate realization via measurement of qubits 1 and 2 in the bases
B1��� and B2��� and equivalent circuit.

TABLE IV. Experimental fidelity �F� of CNOT gate output target
qubit for different value of � and O.

O � Control output F �s4=0� F �s4=1�

� /2 s1=0→ �1�c 0.965�0.004 0.975�0.004

H s1=1→ �0�c 0.972�0.004 0.973�0.004

� /4 s1=0→ �1�c 0.995�0.008 0.902�0.012

s1=1→ �0�c 0.946�0.010 0.945�0.009

O � Control output F �s1=s4=0� F �s1=0,s4=1�

� /2 �0�c	���kB
0.932�0.004 0.959�0.003

1 �1�c= �r�kB
0.941�0.005 0.940�0.005

� /4 �0�c= ���kB
0.919�0.007 0.932�0.007

�1�c= �r�kB
0.878�0.009 0.959�0.006
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control qubit kB in the basis 
�0�,�1�� when O=1. These re-
sults demonstrate the high quality of the operation also in
this case.

C. CPHASE gate

The four-qubit cluster allows also the realization of a
CPHASE gate for arbitrary target qubit and fixed control
�+ �c. The measurement pattern needed for this gate is shown
in Fig. 9 �bottom� and consists of the measurements of qubits
1 and 2 in the bases B1��� and B2��−1�s1	�. These two mea-
surements realize a generic rotation Rx�	�Rz��� on the input
target qubit �+ �t, as explained in Sec. IV A. The link existing
between qubit 3 and 4 in the cluster performs the subsequent
CPHASE gate between the control qubit �+ �c and a generic
target qubit Rx�	�Rz����+ �t.

The experimental realization is done by considering the
following ordering between the physical qubits:

�d� �1,2,3,4� = ��A,�B,kB,kA� ,

U = H � 1 � �x � �zH . �26�

We realized a CPHASE gate for arbitrary target qubit and fixed
control �+ �c �see Fig. 9�c�� by measuring qubits 1 and 2 of
��4

lin� in the bases ���� and ��−�s1	��, respectively. By con-
sidering ordering �d� we encoded the output state in the
physical qubits kA and kB. For s1=s2=0, by using the appro-
priate base changing, the output state is written as

��out� = �− �kA
� �x���kB

+ � + �kA
� �x�z���kB

. �27�

Here ���kB
=Rx�	�Rz��� � + � and the matrix �x is due to the

change of basis. We show in Table V the measured fidelities
of the target kB corresponding to a control �+ �kA

��−�kA
� for

different values of � and 	. An average fidelity F
=0.907�0.010 and F=0.908�0.011 was obtained in the
two cases.

V. ALGORITHMS

A. Grover’s algorithm

The Grover’s search algorithm for two input qubits is
implemented by using the four-qubit cluster state �5,8,29,30�.

Let us describe the algorithm in general. Suppose to have
2M elements �encoded in M qubits� and a black box �or

oracle� that tags one of them. The tagging, denoted as T, is
realized by changing the sign of the desired element. The
goal is to identify the tagged item by a repeated query to the
black box; the Grover’s algorithm requires O��2M� opera-
tions, while the best classical algorithm takes on average
2M /2 calculations.

The general algorithm starts with the input state prepared
as ��+�	�+ �E1

¯ �+ �EM
and consists of repeated applications

of the Grover operator G, given by the oracle tagging T
followed by the so-called inversion about average operation
I	2 ��+���+ �−1. We can thus write G	IT. In general, af-
ter R=O��2M� iterations of G the tagged item is obtained at
the output of the circuit with high probability.

In the case of 2 qubits the quantum algorithm �shown in
Fig. 10 �right�� requires just one G operation. The four ele-
ments are �0�E1

�0�E2
, �0�E1

�1�E2
, �1�E1

�0�E2
, and �1�E1

�1�E2
.

They are prepared in a complete superposition, i.e., in the
state �+ �E1

�+ �E2
, while the black box tagging acts simply by

changing the sign to one of the elements, for instance
�1��0�→−�1��0�. It consists of a CPHASE gate followed by two
single qubit rotations, Rz���1 and Rz�	�2. By setting the ro-
tation angles �	 to 00, �0, 0�, or �� the black box tags,
respectively the states �1��1�, �1��0�, �0�, �1�, or �0��0� �remem-
ber that Rz��� is �z up to a global phase�. The inversion
operation consists of a CPHASE gate and single qubit gates
�see Fig. 10 �right��. The inversion acts such as the output
state of the system is exactly the tagged item.

This algorithm can be realized in the one-way model by
using the four-qubit box cluster state. By measuring qubit 1
and 4 in the basis B1��� and B4�	� we implement the black
box and the first part of the inversion algorithm �box cluster
algorithm in Fig. 10�. The output qubits are then encoded
into the physical qubit 2 and 3. The H�z operation needed to
conclude the inversion operation can be performed at the
measurement stage. Indeed we can measure the qubit 2 and 3
in the basis Bj���: this is equivalent to apply H�z gates and
then to perform the measurement in the computational basis

�0�,�1�� �see measurement in Fig. 10�.

Without Pauli errors the desired tagged item is given by
�s2��s3�. Depending on the measurement outcome �s1 and s4�
the corresponding Pauli errors are ��z�s1��x�s4 on the qubit E1
and ��z�s4��x�s1 on the qubit E2. However, since the output of
the algorithm will be one of the four states of computational
basis, the �z operation leaves the output unchanged, while �x
flips the output state �see Eq. �12��. In this way the tagged
item is found to be �s2 � s4�E1

�s3 � s1�E2
and the FF correc-

tions are simply relabeling FF.

TABLE V. Experimental fidelity �F� of CPHASE gate output tar-
get qubit for different value of � and 	. In parentheses we indicate
the corresponding measured output of the control qubit kA.

� 	 FkB
�kA= �−�� FkB

�kA= �+ ��

0 0 0.878�0.004 0.933�0.003

� 0 0.919�0.003 0.917�0.004

� /2 0 0.876�0.005 0.816�0.005

−� /2 0 0.880�0.004 0.883�0.004

� /2 � /2 0.969�0.002 0.949�0.003

� /2 −� /2 0.950�0.003 0.939�0.003

� /4 � /2 0.885�0.006 0.916�0.005

FIG. 10. �Color online� Grover’s algorithm. Left: Realization of
the Grover’s algorithm through the measurements of qubit 1 and 4
on the box cluster ��4

��. Right: Logical circuit implementing the
Grover operator G=IT. The first part of G is implemented by the
cluster algorithm while the second part by the measurement.
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Let us now describe the experimental realization of the
Grover’s algorithm by our apparatus. If we consider the fol-
lowing ordering of the physical qubits �see Eq. �15��:

�e� �1,2,3,4� = �kB,�A,kA,�B� ,

U = �xH � H � �zH � H , �28�

the generated state �14� is equivalent to the box cluster ��4
��

up to the single qubit unitaries given by U. By this change of
basis we can determine the correct measurement to be per-
formed in the laboratory basis.

The experimental results are shown in Fig. 11. In the up-
per graph we show the experimental fidelities obtained when
the computation proceeds without Pauli errors, i.e., s1=s4
=0. The mean value of probability of identifying the tagged
item is 0.9482�0.0080 and the algorithm is realized at
�250 Hz. We report in the lower graph the identification
probability with FF corrections implemented. In this case the
tagged item is discovered with probability 0.9475�0.0022
and the algorithm is realized at �1 kHz repetition rate, as
expected. Note that in the lower graph a change of the tagged
item corresponds to reorder the histograms. This is due to the
fact that the measurement in the basis B���= 
�−� , �+ �� is the

same as B�0�= 
�+ � , �−��: the difference is that in the first
case we associate s=0 to ��� while in the second we associ-
ate s=0 to ���.

B. Deutsch’s algorithm

The four-qubit cluster state allow the implementation of
the Deutsch’s algorithm for two input qubits �31�. This algo-
rithm distinguishes two kinds of functions f�x� acting on a
generic M-bit query input: the constant function returns the
same value �0 or 1� for all input x and the balanced function
gives 0 for half of the inputs and 1 for other half. Usually the
function is implemented by a black box �or oracle�. By the
Deutsch’s algorithm one needs to query the oracle just once,
while by using deterministic classical algorithms one needs
to know the output of the oracle many times �as 2M−1+1�.
The oracle implements the function f on the query input �x�q
through an ancillary qubit �y�e:

Oracle:�x�q�y�e → �x�q�y � f�x��e, �29�

where y=0,1 and x=0,1 , . . . ,2M −1. If the oracle acts on the
input qubits �+ �1�+ �2¯ �+ �M�−�e, the output state is

1
�2M �

x=0

2M−1

�− 1� f�x��x�q�− �e. �30�

By applying the Hadamard gates for each qubits the output
state can be written as

� �
a=1

M

�0�a�1�e, if f is constant,

�
a=1

M

�1�a�1�e, if f is balanced.� �31�

Then, by measuring the query state in the computational ba-
sis, we can discover if the function f is constant or balanced.
The algorithm thus proceeds through the following three
steps:

�1� Preparation. It consists in the initialization of the in-
put state into �+ �1�+ �2¯ �+ �M�−�e.

�2� BB. This is the Oracle operation �29�.
�3� Readout. This corresponds to apply the Hadamard

gates for each qubits and measure them in the computational
basis 
�0� , �1��.

In the two-qubit version the function f acts on a single
qubit �x�q. In this case there are four possible functions f on
a single qubit: two are constant, namely f1�0�= f1�1�=0 and
f2�0�= f2�1�=1, while two are balanced f3�0�=0, f3�1�=1
and f4�0�=1,f4�1�=0. Let us describe the oracle operation
�29� as a “black box” �BB�. In Table VI we give the oracle
operation on the two qubits �x�q�y�e depending on the chosen
function f i.

By the four-qubit cluster it is possible to implement the
two-qubit version of the algorithm. Let us consider Fig. 12.
The algorithm is implemented by the measurements of qubit
2 and 4, while the output is encoded in the qubit 1 �query
qubit� and 3 �ancillary qubit�. Precisely, the measurement of
qubit 4 in the basis B4��� performs the transformation
HRz��� on the ancillary qubit.
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FIG. 11. �Color online� Experimental results of the Grover’s
algorithm. Upper graph: We report, for different tagged items, the
probability of the different output states when the computation pro-
ceeds without Pauli errors. Experimental errors are of the order of
0.005 for higher histograms, while for the lower ones becomes
0.0005. Lower graph: Experimental probabilities in the FF case.
Experimental errors are of the order of 0.002 for higher histograms,
while for the lower ones becomes 0.0004. Each datum is obtained
by 10 s measurement.
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The BB is implemented by the measurement of qubit 2. If
the oracle chooses the measurement basis 
�0�2 , �1�2� it
implements the f1 function. In fact qubit 2 is removed from
the cluster and no operation is performed on the other qubits.
The full cluster algorithm consists of the operation 1q
� �HRz����e. This is exactly the Deutsch algorithm in the
case of constant function up to a Hadamard gate on the query
qubit that must be implemented in the final measurement
step. The measurement basis on the output qubits 1 and 3 are
then B1�0� and 
�0�3 , �1�3� �see measurement in Fig. 12�.

By choosing B2� �
2 � as measurement basis for qubit 2 the

oracle implements the f3 function and the obtained operation
is �see CBB3� �Rz�−

�
2 ��q � �Rz�−

�
2 ��eGCZqe

. Together with the
1q � �HRz����e the full cluster algorithm becomes
�Rz�−

�
2 ��q � �Rz�−

�
2 �H�e�GCNOTqe

� 1q � �Rz����e �the cluster al-
gorithm in Fig. 12�. This corresponds to the Deutsch’s algo-
rithm in case of balanced function up to
�Rz�−

�
2 ��q � �Rz�−

�
2 �H�e to be corrected in the final measure-

ment step. These corrections corresponds to the choice of the
measurement basis on the output qubits 1 and 3 as B1�− �

2 �
and 
�0�3 , �1�3� �see measurement in Fig. 12�.

Without Pauli errors the output state of the Deutsch’s al-
gorithm is given by �s1=0�q�s3=1�e in case of f1 and �s1
=1�q�s3=1�e in case of f3 �see Eq. �31��. The correct out-
comes considering the Pauli errors are in this case

�s1 � s2�q�s3 � s4�e, for f1,

�s1 � s2 � s4�q�s3 � s4�e, for f3. �32�

Note that the BB operation obtained by the function f2 �f4� is
essentially the same, up to a global phase, with respect to the
function f1 �f3�. In the following we then show only the
results obtained in the case of f1 and f3.

We show in Fig. 13 the experimental probabilities of the
different output states as a function of the value of s2 and s4
for the f1 and f3 case. In the case of f1, for s2=s4=0 the
output of the algorithm is the state �0�q�1�e with probability
0.924�0.005, while in the other cases are �0 � s2�q�1 � s4�e
in agreement with Eq. �32�. By using the FF relabeling we
obtain the correct output with probability 0.949�0.002. In
the case of balanced function the correct output after the FF
operation is obtained with probability 0.967�0.002.

VI. CONCLUSIONS

We have described the basic principles of operation of a
one-way quantum computer operating with cluster states
built with two photons entangled in two different DOF’s. We
have also presented the experiment �and the corresponding
results� carried out when the DOF’s are the polarization and
the linear momentum.

One-way QC based on multi-DOF cluster states presents
some important advantages with respect to the one per-
formed with multiphoton cluster states. In particular the rep-
etition rate of computation is almost three order of magni-
tude larger; the fidelity of the computational operations is
much higher �nearly 90%, even with active FF�; in some

TABLE VI. Oracle operation �BB� depending on the single qu-
bit function f i. The two function f1 and f2 are constant, while f3 and
f4 are balanced.

Constant functions Balanced functions

f1 f2 f3 f4

BB 1a � 1e 1a � �x
�e� GCNOTae

�1a � �x
�e��GCNOTae

FIG. 12. �Color online� Implementation of the Deutsch’s algo-
rithm. Measurement pattern on the physical cluster �left� and corre-
sponding operations on the logical qubits �right�. Measurements of
qubit 2 and 4 on the left correspond to the cluster algorithm in the
right. The output logical qubits are encoded in the physical qubits 1
�query, q� and 3 �ancilla, e� that should be measured in order to read
out the answer of the algorithm �measurement in the right�.
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Constant Function

Balanced Function

FIG. 13. �Color online� Experimental probabilities of the output
states of the Deutsch algorithm in case of constant �top� or balanced
�bottom� function. The probabilities are shown for all the values of
s4 and s2, while in the last column are shown the results after the FF
relabeling operation.
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cases the intermediate FF operations do not require active
modulators, differently from the case of multiphoton cluster
states; the FF operations are automatically �and also deter-
ministically� implemented in these cases because of the en-
tanglement existing between the two DOF’s of the same par-
ticle; working with two photons allows to minimize the
problems caused by the limited efficiency of single photon
detectors.

The possibility of multi-DOF encoding of qubits is a use-
ful and powerful tool for an optical approach to quantum
computation. By detecting a single photon we measure at the
same time different qubits. A simultaneous collapse of some
qubits can be caused by either a measurement process or an
environment perturbation acting on a single photon. In pres-
ence of noise this corresponds to loosing these qubits. On the
other hand, as explained in the text, this feature can be used
to deterministically implement the FF measurements.

A larger number of qubits is necessary to perform more
complex gates and algorithms. For instance, using a type-I

NL crystal a continuum of k-emission modes is virtually
available to create a multiqubit spatial entangled state. Even
if the number of modes scales exponentially with the number
of qubits, it is still possible to obtain a reasonable number
�six or even eight� of qubits. In a recent experiment we tested
a reliable interferometric configuration to implement energy-
time entanglement as a further independent DOF in a two-
photon cluster state �32�. Hence, increasing the number of
DOF’s of the photons allows one to move further than what
is expected by increasing the number of photons. Because of
all these reasons we believe that cluster states based on many
DOF’s is a good alternative for experimental QC with pho-
tons on a midterm perspective.
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