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We investigate the multiparticle quantum superposition and the persistence of bipartite entanglement of the
output field generated by the quantum injected high-gain optical parametric amplification of a single photon.
The physical configuration based on the optimal universal quantum cloning has been adopted to investigate
how the entanglement and the quantum coherence of the system persists for large values of the nonlinear
parametric gain g.
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I. INTRODUCTION

In recent years, a large number of experiments aimed at
the verification of fundamental aspects of quantum mechan-
ics, such as quantum nonlocality, have been realized by
adopting photon particles mutually interacting through non-
linear optical �NLO� processes. In addition sophisticated
NLO methods have been extended to relevant investigations
and realizations in the domain of the emerging new sciences
of quantum information �QI� and quantum communication.
In particular one such method, the quantum injected nonlin-
ear �NL� parametric amplification �QIOPA� of single photon
states, was particularly fruitful since it was adopted to pro-
vide the first experimental realization of the quantum cloning
transformation, a fundamental QI concept �1–3�. This one
provides the optimal distribution of the information con-
tained in a quantum system, e.g., an N quantum-bit state, or
qubit, onto a system of higher dimension, M �N. By virtue
of the isomorphism existing between any logic qubit associ-
ated with spin 1/2 and the polarization state of a single pho-
ton, there it is generally supposed that N photons, identically
prepared in an arbitrary state of polarization �����, are in-
jected into the amplifier on the input mode k1 �4,5�. The
amplifier then generates on the output cloning mode �C� M
�N copies, or clones of the input qubit ���. Moreover, in the
case of mode-nondegenerate QIOPA, the device simulta-
neously generates M −N states ���� on the output anticlon-
ing mode k2 �ac� thus realizing a universal quantum NOT gate
�6�.

In the last years, the QIOPA scheme has been at the basis
of experimental realizations of the 1→2 universal optimal
quantum cloning machine �UOQCM� �3,6–9� and of the
1→3 phase covariant quantum cloning machine �PQCM�
�10�. These tests, carried out in low power linearized condi-
tions, i.e., with very low values of the NL parametric gain
parameter g�1, were followed recently by a series of OPA
works, carried out in absence and in presence of quantum
injection, which realized the high-gain �HG� spontaneous
and stimulated generation of a large number of output pho-
tons M �11–13�. Within this new N→M cloning endeavor, a
multiphoton superposition entangled state was generated, in-
deed a Schrödinger Cat state �14,15�. By virtue of the

information-preserving �i.e., coherence-preserving� property
of the parametric process, this implied the deterministic
transferral of the well accessible and easily achievable quan-
tum superposition condition affecting any input single-
particle qubit to a “mesoscopic,” i.e., multiparticle, amplified
quantum state �12�.

In the present article, we investigate theoretically the na-
ture of quantum injected optical parametric amplification in
high-gain regime. In particular we intend to investigate the
most important property of the process, i.e., the entangle-
ment of the output modes in the multiparticle condition. We
show how this task can be undertaken by application of a
technique, here referred to as “pair extraction technique,”
adopted to investigate the multiphoton states generated by
high-gain spontaneous parametric down conversion �SPDC�
�11,13�.

In case of a bipartite entanglement, e.g., established over
the output cloning and anticloning modes k1 and k2, the
basic idea is to investigate a two-photon field component
“extracted” out of the output multiphoton field and then infer
the entanglement properties of the original field. Conceptu-
ally, the basic argument underlying this method consists of
the impossibility of creating or enhancing the entanglement
by any local operation, e.g., in this case by induced losses
�16�. In order to do that, the adopted theoretical model takes
into account the propagation losses leading to the imperfect
detection of the output field. In the SPDC case, the explicit
form for the two-photon output state has been found to ex-
hibit a Werner state structure, i.e., consisting of a weighted
mixture of a maximally entangled �singlet� state with a fully
depolarized state �17�. This structure is resilient to losses for
any value of the nonlinear gain parameter g. A similar ap-
proach will be applied to investigate theoretically the bipar-
tite entanglement in the high-gain QIOPA process. The the-
oretical model enables one to obtain the explicit form of the
two-photon output density matrix for any value of g. More
precisely, the application of the method goes as follows. Let
us start from a polarization entangled pair of photons asso-
ciated with the output modes k1 and kT: Fig. 1. The photon
created over kT freely propagates and is detected by the pho-
totube DT while the photon associated to mode k1 is injected
into the optical parametric amplifier. As a result of the
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coherence-preserving nature of the amplification process the
quantum correlations between the initial two photon en-
tangled states are transferred into correlations between the
photon on mode kT �hereafter referred to as the “trigger”�
and the output field of the QIOPA device.

In order to characterize the field generated over the three
output modes kT, k1, and k2 in the high-gain regime, we
explicitly derive the reduced density matrix of the three pho-
ton states obtained over all the output modes adopting the
pair extraction technique. Hence we shall investigate the
characteristics of each bipartite system: trigger-cloning,
trigger-anticloning, and cloning-anticloning modes. Each
subsystem has been found to exhibit a Werner structure. By
adopting this model we are able to analyze the general en-
tanglement properties of the overall three mode system. Fur-
thermore, this leads to the demonstration of the persistence
of entanglement for the two systems trigger-cloning and
cloning-anticloning for any large value of the gain parameter
g, in our opinion the main result of the present work �16�.

The article is structured as follows. In Sec. II we present
the method to extract from multiphoton states generated by
the amplification process two photon components making
use of lossy channel and imperfect detection. In Sec. III we
analyze the quantum correlations between trigger, cloning,
and anticloning, realizing a model for the three qubit density
matrix with the same projection scheme. Finally, Sec. IV is
devoted to the discussions of agreement with the experimen-
tal apparatus and the perspectives of the present research.

II. QIOPA IN THE PAIR-EXTRACTION REGIME

In this section, we analyze the amplified multiphoton
quantum injected state with particular emphasis on the effect
of losses on bipartite correlations. Let us consider the experi-
mental scheme reported in Fig. 1. A single photon �mode k1�
is injected into the nonlinear �NL� crystal, typically a BBO
��-barium-borate�, cut for type-II phase matching and ex-
cited by a sequence of uv �ultraviolet� mode-locked laser
pulses of wavelength �wl� �p propagating along the mode kP.
The relevant modes of the NL three-wave interaction driven
by the uv pulses associated with mode kp are the two spatial

modes with wave vector �wv� ki, i=1,2, each one supporting
the two horizontal �H� and vertical �V� polarizations of the
interacting photons. The QIOPA is � degenerate, i.e., the
interacting photons have the same wl’s �=2�p. The injected
single photon is provided by an external spontaneous para-
metric down conversion source of biphoton states �4�.

The Hamiltonian of the parametric down-conversion pro-
cess in the interaction picture reads �3,4�

Ĥ = i��â1H
† â2V

† − â1V
† â2H

† � + H.c., �1�

where âij
† represents the creation operators associated to the

spatial propagation mode ki, with polarization j= �H ,V�. The
NL coupling constant � depends on the nonlinearity of the
crystal and is proportional to the amplitude of the pump

beam. It has been theoretically shown �18,19� that Ĥ is in-
variant under simultaneous general SU�2� transformations of
the polarization vectors for modes k1 and k2. We may, then,
cast the above expression �1� in the following form:

Ĥ = i��â�
† b̂��

† − â��
† b̂�

† � + H.c., �2�

where the field labels refer to two mutually orthogonal po-
larization unit vectors for each mode, � and ��, corre-
sponding respectively to the state vectors: ��� and ����.
This Hamiltonian generates a unitary transformation

Û=e−iĤt/� acting on the input multimode photon state.
Let us consider first the injection of a polarization en-

coded qubit in the QIOPA system:

���IN 	 	���IN
H + ����IN

V �3�

with �	�2+ ���2=1, defined in the �2
2�-dimensional Hilbert
space of polarizations ����. We analyze this configuration
by accounting for the two interacting optical modes k1
and k2, i.e., in terms of the basis vectors:
���IN

H = �1�1H �0�1V �0�2H �0�2V	�1,0 ,0 ,0�, ���IN
V = �0,1 ,0 ,0�.

In virtue of the general information preserving property of
any nonlinear �NL� transformation of parametric type, the
output state is again expressed by a “multiparticle qubit”:

��� 	 Û���IN = Û�	���IN
H + ����IN

V � = 	���H + ����V.

�4�

Since ���IN is a pure state and Û is unitary, ��� is also a pure
state. Furthermore and most important, it consists of a quan-
tum superposition of two orthonormal, multiparticle states
���H and ���V.

���H 	 � 

i,j=0



�− ��i+j�− 1� j�i + 1�i + 1, j, j,i� , �5�

���V 	 � 

i,j=0



�− ��i+j�− 1� j�j + 1�i, j + 1, j,i� , �6�

where C	cosh g, �	C−3, �	 tanh g, and g	�t̄int ex-
presses the NL gain of the parametric process, t̄int being the
interaction time.

In order to implement the pair extraction technique de-
scribed above in Sec. I, we may now explicitly derive the

DT

θ θ θ  = 45°

OPA
UV

k 1

k 2

SPDC 

|0>2h ⊗ ⊗ ⊗ |0>2v

k T

k p

UV

Z

FIG. 1. �Color online� Schematic diagram of the single photon
quantum injected optical parametric amplifier �QIOPA�. The injec-
tion is provided by an external spontaneous parametric down con-
version source of polarization entangled photon states �4�. The
losses are simulated by the insertion of a beam splitter �BS� over
each propagation mode ki.
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theoretical expression of the “pair extracted” density matrix
in the regime of photon losses on all QIOPA spatial and
polarization output modes. According to a standard proce-
dure, the losses are simulated by the insertion of dummy
ideal beam splitters �BS� on the optical modes, followed by
ideal detectors �20�. Let us first express the above QIOPA
output wave function in absence of losses, in terms of
vacuum states:

��� = � 

i,j=0



�− ��i+j �− 1� j

j ! i!
�â1H

†�i+1�â1V
†j â2H

†j â2V
†i

− â1H
†i â1V

†�j+1�â2H
†j â2V

†i ��0,0,0,0� . �7�

After insertion of the BS, the lossless QIOPA output field
operators �âij

† � are transformed into the �âij−OUT
† � acting again

on the output lossy channels, by the unitary BS map:

�âij−OUT
† �t�

b̂ij−OUT
† �t�

 = � �� �1 − �

�1 − � ��
�âij

† �t�

b̂ij
† �t�

 . �8�

Here the operators �b̂ij
† � and �b̂ij−OUT

† � correspond to the input
and output side, i.e., “reflected modes” of the BS that do not

coincide with the QIOPA states. Precisely, the set �b̂ij
† � and

�b̂ij−OUT
† � act correspondingly on a set of side vacuum states

and on the set of ”reflected modes” �k˜i
OUT�. We assume fur-

ther that all BS are equal and characterized by a common
spatially and polarization independent transmittivity param-
eter �.

The lossy effect of the BS maps ��� into an output state
���OUT

BS which involves the four output “transmitted modes”
and the four output “reflected modes” of the two BS.
Precisely, ���OUT

BS is expressed in terms of Fock states:
�n1H ,n1V ,n2H ,n2V�a � �n1H ,n1V ,n2H ,n2V�b where the two
terms in the tensor product represent, respectively, the output
transmitted BS modes �â modes� and the output reflected

modes �b̂ modes�. The output state of the overall �QIOPA
+BS� system is found to reproduce the quantum superposi-
tion behavior

���OUT
BS = � 


i,j=0


�− ��i+j�− 1� j

i ! j!
�− � �1 − �2�2*�i+j�+1


�	��i,j
H � + ���i,j

V �� , �9�

where

��i,j
H � = 


l1=0

i+1



l2=0

j



l3=0

j



l4=0

i � �

− � �1 − �2�l1+l2+l3+l4�


j !��i + 1

l1
� j

l2
� j

l3
� i

l4
�i + 1� ! i!


�l1,l2,l3,l4�a�i + 1 − l1, j − l2, j − l3,i − l4�b �10�

��i,j
V � = 


l1=0

i



l2=0

j+1



l3=0

j



l4=0

i � �

− � �1 − �2�l1+l2+l3+l4�


i !�� i

l1
� j + 1

l2
� j

l3
� i

l4
�j + 1� ! j!


�l1,l2,l3,l4�a�i − l1, j + 1 − l2, j − l3,i − l4�b,

�11�

with �2=−1. All undetected BS “reflected modes” must then
be discarded, i.e., traced out in the above expressions leading
to the reduced density matrix ��=Trb����OUT

BS
OUT
BS ���� over

the transmitted modes �ki
OUT� that can be expressed as

follows:

�� = 

k1=0





k2=0





k3=0





k4=0



�k1,k2,k3,k4�b���OUT
BS ����k1,k2,k3,k4�b.

�12�

Up to now we have considered arbitrary, polarization-
symmetric channel losses. In the following we make the ad-
ditional assumption of high losses, which will greatly sim-
plify the calculations. The explicit expression of �� may now
be easily obtained in the high-loss regime, i.e., identified by
the relation �n̄�1, �n̄ being the average number of photons
transmitted by the BS per mode. By virtue of this condition
we may drop the terms of the sums proportional to �n for
n�2. This corresponds to consider only matrix elements of a
representation in which any Fock basis state corresponds to a
photon occupation number n�2. As final step we assume to
detect one photon on each mode ki

OUT by a standard two-
photon coincidence technique over the QIOPA output
modes, k1 and k2. By this technique we only investigate
output states involving one photon emitted over these
two modes. This output condition is expressed by a matrix
representation of �� involving the basis states
��1,0 ,1 ,0� , �1,0 ,0 ,1� , �0,1 ,1 ,0� , �0,1 ,0 ,1��, corresponding
to the basis ��H�1 �H�2 , �H�1 �V�2 , �V�1 �H�2 , �V�1 �V�2�. The ex-
plicit expression of the detected “pair extracted” density ma-
trix is finally given by the expression

�� =
1

3d�
�	�2d + ���22t2 �	*d − �	*2 0

	�*d �	�22�1 + d� + ���2d − �	�22 − ���22 �	*2

− 	�*2 − �	�22 − ���22 �	�2d + ���22�1 + d� − �	*d

0 	�*2 − 	�*d �	�22t2 + ���2d
� �13�
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with d= �1+ t2� and t=��1−�2�. Let us consider the particu-
lar asymptotic case �→0, i.e., t� tanh g. Figure 2 refers to
different injection states and to different values of the inter-
action parameter g. There the tomographic patterns are re-
produced identically for any couple of different orthogonal
input states ���� , ����� as a consequence of the universality
of this process, Eq. �2�. Furthermore, the structure of the
4
4 matrices shows the relevant quantum features of the
output state. For instance, the highest peak on the diagonals
expressing the quantum superposition of the input state shifts
from the position ���������� to ���������� in correspon-
dence with the OPA excitation by any set of generic orthogo-
nal injection states ���� , �����.

Let us estimate the entanglement of the pair extracted
output state �13�. Owing to the tested universality of the
amplification process we restrict the present analysis to the
input qubit ���IN	�H�, i.e., 	=1, �=0. In this case the two-
photon density matrix reads

�� =
1

3�1 + t2��
1

2
�1 + t2� 0 0 0

0 �2 + t2� − 1 0

0 − 1
1

2
�1 + t2� 0

0 0 0 t2

� .

�14�

The entanglement measurement, the “concurrence” is C����
= �2/3�1+ t2���1− t

2
�1+ t2� �21�. We found C�����0 for any

value of g and C����→0 for g→. This result complies
with the one obtained in the case of the 1→M universal
quantum cloning by Ref. �22�. There it was shown that in
this cloning process closely parallel to the present configu-
ration, the concurrence between a clone and an ancilla is
always different from zero for any value of M and vanishes
in the limit M→.

We now analyze the output state �14� over each one of the
output modes, by further tracing ��. For the mode k1 we
obtain

�k1� =
1

6�1 + t2�
�5 + 3t2 0

0 1 + 3t2  . �15�

The fidelity between the output state and the input is
F��H� ,�k1� �= �H ��k1� �H�= �5+3t2� /6�1+ t2�. In the limit
g→ we obtain F= 2

3 while the limit g→0 leads to F= 5
6 . In

the present investigation, dealing with the generation of a
pair of photons, we retrieved exactly the result obtained for
the 1→2 optimal cloning process. The average number of
photons over the mode k1 is equal to 3n̄+1 with n̄=sinh2 g.
Hereafter the mode k1 will also be referred to as the cloning
mode.

The single photon polarization state over mode k2 is de-
scribed by the density matrix for any g value:

�k2� = �1/3 0

0 2/3
 . �16�

The fidelity between the output state and the orthogonal of
the input one F��V� ,�k2� �=2/3. Hereafter the mode k2 will be
referred to as the anticloning mode.

III. SCHRÖDINGER CAT STATE: PERSISTENCE
OF ENTANGLEMENT

Let us now consider a different, more complex configura-
tion in which the injected photon belongs to a polarization
entangled pair: see Fig. 3. The previous theoretical method
will be adopted here to investigate the properties of the over-
all output field. Let us now go into details. The initial pump
beam is split by an unbalanced beam splitter �BSP� into two
beams. A low intensity beam kP� excites the NL crystal A
which generates pairs of entangled photons over the modes
k1 and kT:

��−�kT,k1 = 2−1/2��H�kT�H�k1 − �V�kT�V�k1� , �17�

where subscripts kT, k1 refer to trigger and injection photons,
propagating along kT and k1 modes, respectively. The pump

FIG. 2. �Color online� Theoretical density matrix of the reduced
two-photon output state over the output modes ki �i=1,2� condi-
tioned by the injection of a generic input polarization qubit ��� �left
column� and ���� �right column� on the mode k1. �a� corresponds to
g=0.1, �b� to g=1, �c� to g=3. The imaginary parts with all matrix
elements equal to zero are not reported.
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power is sufficiently low to avoid the simultaneous genera-
tion of more than one pair of photons. The photon over the
mode kT provides the trigger of the overall experiment while
the twin photon over the mode k1 excites the NL crystal B
together with the pump beam kP �4�.

The overall dynamic of the process is described by the

unitary operator V̂= ÎkT � Ûk1 acting on the initial state

��−�Tk1 � �0�k2, where Ûk1 is the time evolution operator act-

ing on the injection state and ÎkT is the unit matrix acting on
the trigger state. Using the results of the previous section we
obtain

��� = V̂��−�kT,k1 �18�

=2−1/2���H�kT � 

i,j=0



�− ��i+j�− 1� j�i + 1�i + 1, j, j,i�

�19�

− �V�kT � 

i,j=0



�− ��i+j�− 1� j�j + 1�i, j + 1, j,i� . �20�

This multiparticle quantum state exhibits an entangled struc-
ture connecting the microscopic property of the system, i.e.,
the single particle “trigger” acting on the mode kT, and the
macroscopic quantum superposition. This indeed corre-
sponds to the original definition of “Schrödinger Cat state”
�14,15�.

In the following we apply the pair extraction method to
analyze the entanglement properties of the overall wave
function �19�. High losses are introduced over the modes ki
�i=1.2�. Detection of photons over the three modes ki, kT

enables us to reconstruct the density matrix through a tomog-
raphic technique. The theoretical model shows the presence
of entanglement between the trigger photon and each one of
the amplified photons. Since the entanglement is not ascrib-
able to the subsequent amplification process which is acting
locally on the k1 arm of the pair, one is forced to conclude
that the original trigger-injection entanglement has survived
the QIOPA amplification.

Under the pair extraction approximation on ki �i=1.2�,
i.e., after applying high losses on the output modes before
detection, the expression of the overall normalized three qu-
bit pair extracted density matrix is easily found:

�� =

⎝
⎜
⎜
⎜
⎛

1

12
0 0 0 0

1

12
−

1

6 + 6t2 0

0
2 + t2

6 + 6t2 −
1

6 + 6t2 0 0 0 0 −
1

6 + 6t2

0 −
1

6 + 6t2

1

12
0 0 0 0

1

12

0 0 0
t2

6 + 6t2 0 0 0 0

0 0 0 0
t2

6 + 6t2 0 0 0

1

12
0 0 0 0

1

12
−

1

6 + 6t2 0

−
1

6 + 6t2 0 0 0 0 −
1

6 + 6t2

2 + t2

6 + 6t2 0

0 −
1

6 + 6t2

1

12
0 0 0 0

1

12
⎠
⎟
⎟
⎟
⎞

. �21�

BS
D1P

D2PBS
k2

k1
kp

NL
crystal B 

0 k2

k1

NL
crystal A kT

Z

k’p

BSP

FIG. 3. �Color online� Schematic diagram of the quantum in-
jected optical parametric amplifier �QIOPA�. The pump beam kP�
excites the NL crystal A which generates pairs of entangled photons
over the modes k1 and kT. The photon over the mode kT provides
the trigger of the overall experiment while the twin photon over the
mode k1 excites the NL crystal B together with the pump beam kP

�4�. The losses are simulated by the insertion of a beam splitter �BS�
over each propagation mode ki.
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Figure 4 reports density matrices for two different values of
interaction parameter g.

In order to understand at a deeper level the multi-
particle quantum cloning process, we may consider the
�4
4�-dimensional matrices obtained by tracing �� over the
remaining state of the manifold �ki ,kT�.

Let us start from the system consisting of the ki �i=1.2�
modes, i.e., by the cloning-anticloning systems. The reduced
density matrix �k1,k2� =TrkT���� of the extracted two photons
is found,

�k1,k2� =�
1 − p

4
0 0 0

0
1 + p

4
−

p

2
0

0 −
p

2

1 + p

4
0

0 0 0
1 − p

4

� , �22�

with p= 2
3

1
1+t2 . We note that the above density matrix has the

form of a Werner state �WS� �W= p ��−���− � + 1−p
4 I, i.e.,

a mixture of the maximally entangled state ��−�1,2

=2−1/2��H�1 �V�2− �V�1 �H�2� with probability p and of the
fully chaotic state I /4, being I the identity operator on the
overall Hilbert space. Note that for any finite value of the NL
value g, the singlet probability is p�

1
3 reaching asymptoti-

cally the value p= 1
3 for g→. Since the condition p�

1
3 is a

necessary and sufficient one for state nonseparability of any
WS �23�, the entanglement condition affecting the pair ex-
tracted �k1,k2� , and then of its multiparticle counterpart �k1,k2,
does persist for any finite value of g. All this can be com-
pared with a similar result obtained in the regime of sponta-
neous parametric down conversion, i.e., with no injection of
a single photon state �see Fig. 5�. In the SPDC case it was
found p̄= 1

1+2t2 �13�. The concurrence of the state �22� is

Ck1,k2=2 max� 3p−1
4 ,0�= 1

2
� 1−t2

1+t2 �= 1
2 �sinh2 g+cos2 g�−1. In case

of high-gain value we find Ck1,k2� 1
n̄ and �kT,k1= 1

CT,k1
2 = 1

n̄2 . The

average number of output qubits for each mode is equal to
�3n̄.

A similar analysis can be carried out for the correlation
affecting the modes kT and k1, as shown by the structure of
the pair extracted �kT,k1� 	Trk2����,

(a)

g =0.1 

(b)

g = 1 

HHHHHVHVHHVVVHHVHVVVHVVV

HHH
HHV
HVH
HVVVHH

VHVVVH
VVV

0

0.2

HHHHHVHVHHVVVHHVHVVVHVVV

HHH
HHV
HVH
HVVVHH

VHVVVH
VVV

HHHHHVHVHHVVVHHVHVVVHVVV

HHH
HHV
HVH
HVVVHH

VHVVVH
VVV

0.1

0

0.1

0.2

HHHHHVHVHHVVVHHVHVVVHVVV

HHH
HHV
HVH
HVVVHH

VHVVVH
VVV

FIG. 4. �Color online� Theoretical density matrix of the reduced
three-photon output state over the modes kT, ki �i=1,2�. �a� corre-
sponds to g=0.1, �b� to g=1. The imaginary parts with all matrix
elements equal to 0 are not reported.
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FIG. 5. �Color online� Theoretical density matrix of the reduced
two-photon output state over the output modes k1, k2 �left column�
and k1, kT �right column�. �a� corresponds to g=0.1, �b� to g=1, �c�
to g=3. The imaginary parts with all matrix elements equal to 0 are
not reported.
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�kT,k1� =�
1 + q

4
0 0 −

q

2

0
1 − q

4
0 0

0 0
1 − q

4
0

−
q

2
0 0

1 + q

4

� , �23�

with q= 2
3

1
1+t2 . Note that once again the density matrix bears

the WS structure �=q ��−���− � + 1−q
4 I, i.e., is a mixture with

probability q of the maximally entangled state ��−�1,2
=2−1/2��H�1 �H�2− �V�1 �V�2� and of the maximally chaotic
state I /4. Once again the entanglement condition q�

1
3 is

met for any finite value of g and q→ 1
3 for g→. Note also

that in the limit of small g�0 is q� 2
3 �the present approach

considers at least the generation of a pair of photons�. The
concurrence of the state of Eq. �23� is found, CkT,k1

= 1
2 �sinh2 g+cosh2 g�−1. In case of large gain value is found,

CkT,k1� 1
n̄ and �kT,k1=CkT,k1

2 = 1
n̄2 . The average number of out-

put clones is equal to 3n̄+1�3n̄.
Consider at last the pair extracted reduced density matrix

involving the k2 and kT modes, �kT,k2� 	Trk1����. Its expres-
sion is found to be gain independent,

�kT,k2� =�
1

6
0 0

1

6

0
1

3
0 0

0 0
1

3
0

1

6
0 0

1

6

� . �24�

It also exhibits a WS structure, �kT,k2� = l ��+���+ � + 1−l
4 I with

l= 1
3 and ��+�1,2=2−1/2��H�1 �H�2+ �V�1 �V�2�. As a conse-

quence, the above state is separable, a result in agreement
with the theory of the optimal quantum machines �24�. In-
deed the QIOPA has been shown to implement over the
mode k2 the universal optimal flipping machine �8�. The
completely positive �CP� map which implements the UNOT

�universal UNOT� gate has the following Kraus representa-
tion EUNOT���= 1

3 ��X��X+�Y��Y +�Z��Z�. The state �kT,k2�
can be obtained applying to the entangled state ��−�kT,k1 the
identity over the mode kT and the CP map EUNOT over the
mode k1,

IkT � EUNOT−k1���−�kT,k1��−�kT,k1�

=
1

3
���+�kT,k2��+�kT,k2 + ��−�kT,k2��−�kT,k2

+ ��+�kT,k2��+�kT,k2
� . �25�

Interestingly enough, the last expression can be shown to be
equal to Eq. �24�. This confirms the overall validity of the
present approach.

IV. DISCUSSIONS AND CONCLUSIONS

In the present paper, the theory of quantum injected opti-
cal parametric amplification has been extensively investi-
gated in regime of high gain and high losses with particular
attention for the entanglement properties of the output fields.
We have exploited the developed theoretical tool to investi-
gate the properties of entangled states after a cloning process,
demonstrating the persistence of entanglement for any clone-
trigger subsystem. Connections with Werner state have been
established in the physical process of stimulated emission. In
addition, we have shown that the properties of QIOPA output
state do comply with the ones conventionally expected for a
Schrödinger Cat system �14,15�. With respect to the persis-
tence of the coherence of the latter system for increasing
“size,” an interesting problem could be the investigation on
the entanglement persistence for increasing the value of the
gain g, i.e., for a very large number of generated clones.
Unfortunately, we expect that for an increasing number of
clones, the small amount of bipartite entanglement should
not be observable due to experimental imperfections �such as
walk off effects and other sources of decoherence�. However
the density matrices experimentally measured in Refs.
�11–13� have been found to be in good agreement with the
theoretical ones. On the other hand, the technique introduced
above turns out to be a useful tool to investigate single pho-
ton features of mesoscopic fields.

An interesting aspect which deserves further investigation
is the effect of losses on the orthogonality condition of the
two wave functions of Eqs. �5� and �6�, in particular how the
detection efficiency influences the distinction of the two ini-
tial orthogonal terms. The two extreme condition can easily
be derived. While for vanishing losses the Hilbert-Schimdt
distance of the two interfering state is found to be
d����H , ���V�=Tr�����H�� �−���V�� � �2�=2, the condition
of very low efficiency of detection leads to d��k1�

H ,�k1�
V�

=2/9. Finally a new approach to investigate quantum fea-
tures of the optical field based on the combination of data
obtained with different detection efficiencies �25� could im-
prove the present results.

The theoretical results obtained above have been carefully
tested by the experiment reported in Ref. �12�. The adopted
optical scheme was similar to the diagram shown in Fig. 3
but for more compact “folded” configurations by which a
single NL crystal slab, excited in both directions by the UV
“pump” laser beam, realized in sequence the SPDC and the
QI-OPA operations. The experimental investigation of the
multiphoton superposition and entanglement implied by Eqs.
�14� and �21� was carried out by means of quantum state
tomography �QST� according to the pair extraction method
previously described. The beams associated with the output
modes ki �i=1,2� were highly attenuated to the single-
photon level by the two low transmittivity BS. Experimen-
tally the maximal value of gain obtained has been found as
gexp= �1.19±0.05�, while the detection quantum efficiencies
read �1= �4.9±0.2�% and �2= �4.2±0.2�%. By the previous
values we found the condition �n̄�0.1. The QST analysis of
the reduced output state �k1,k2� determined by the set of input
���in: ��H� , �V� , �± ��. The good agreement between theory
�k1,k2� and experiment
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�k1,k2� exp is expressed by the measured average Uhlmann “fi-
delity”:

F��k1,k2�exp ,�k1,k2� � 	 �Tr���k1,k2�exp �k1,k2� ��k1,k2�exp �1/2�2

= �96.6 ± 1.2�%.

Finally, the QST reconstruction of the density matrix ��exp

has been carried out with a fidelity F���exp ,���
= �85.0±1.1�%.

ACKNOWLEDGMENT

This work is supported by Ministero dell’Istruzione,
dell’Università e della Ricerca �Grant No. PRIN 2005�.

�1� V. Scarani, S. Iblisdir, N. Gisin, and A. Acín, Rev. Mod. Phys.
77, 1225 �2005�.

�2� N. J. Cerf and J. Fiurasek, e-print quant-ph/0512172.
�3� F. De Martini and F. Sciarrino, Prog. Quantum Electron. 29,

165 �2005�.
�4� F. De Martini, Phys. Rev. Lett. 81, 2842 �1998�.
�5� F. De Martini, Phys. Lett. A 250, 15 �1998�.
�6� F. De Martini, V. Bužek, F. Sciarrino, and C. Sias, Nature

�London� 419, 815 �2002�.
�7� A. Lamas-Linares, C. Simon, J. C. Howell, and D. Bouw-

meester, Science 296, 712 �2002�.
�8� D. Pelliccia, V. Schettini, F. Sciarrino, C. Sias, and F. De Mar-

tini, Phys. Rev. A 68, 042306 �2003�.
�9� F. De Martini, D. Pelliccia, and F. Sciarrino, Phys. Rev. Lett.

92, 067901 �2004�.
�10� F. Sciarrino and F. De Martini, Phys. Rev. A 72, 062313

�2005�.
�11� H. S. Eisenberg, G. Khoury, G. Durkin, C. Simon, and D.

Bouwmeester, Phys. Rev. Lett. 93, 193901 �2004�.
�12� F. De Martini, F. Sciarrino, and V. Secondi, Phys. Rev. Lett.

95, 240401 �2005�.
�13� M. Caminati, F. De Martini, R. Perris, F. Sciarrino, and V.

Secondi, Phys. Rev. A 73, 032312 �2006�.

�14� W. P. Schleich, Quantum Optics in Phase Space �Wiley, New
York, 2001�, Chaps. 11 and 16.

�15� E. Schroedinger, Naturwiss. 23, 807 �1935�. According to the
original definition, the microscopic aspect of the Schrödinger
Cat relates to the single particle trigger of the opening of the
“poison vial.”

�16� V. Vedral and M. B. Plenio, Phys. Rev. A 57, 1619 �1998�.
�17� R. F. Werner, Phys. Rev. A 40, 4277 �1989�.
�18� F. De Martini, V. Mussi, and F. Bovino, Opt. Commun. 179,

581 �2000�.
�19� C. Simon, G. Weihs, and A. Zeilinger, Phys. Rev. Lett. 84,

2993 �2000�.
�20� R. Loudon, The Quantum Theory of Light, 3rd ed. �Oxford

University Press, New York, 2000�, paragraphs 5.7 and 6.10.
�21� W. K. Wootters, Phys. Rev. Lett. 80, 2245 �1998�.
�22� D. Bruss and C. Macchiavello, Found. Phys. 33, 1617 �2003�.
�23� M. Barbieri, F. De Martini, G. Di Nepi, and P. Mataloni, Phys.

Rev. Lett. 92, 177901 �2004�.
�24� F. Sciarrino, C. Sias, M. Ricci, and F. De Martini, Phys. Rev. A

70, 052305 �2005�.
�25� A. R. Rossi, S. Olivares, and M. G. A. Paris, Phys. Rev. A 70,

055801 �2004�; G. Zambra et al., Phys. Rev. Lett. 95, 063602
�2005�.

CAMINATI et al. PHYSICAL REVIEW A 74, 062304 �2006�

062304-8


