
Nonseparable Werner states in spontaneous parametric down-conversion

Marco Caminati,1 Francesco De Martini,1 Riccardo Perris,1 Fabio Sciarrino,2,1 and Veronica Secondi1
1Dipartimento di Fisica, Università “La Sapienza,” Roma 00185, Italy

2Centro di Studi e Ricerche “Enrico Fermi,” Via Panisperna 89/A, Compendio del Viminale, Roma 00184, Italy
�Received 19 October 2005; published 14 March 2006�

The multiphoton states generated by high-gain spontaneous parametric down-conversion �SPDC� in the
presence of large losses are investigated theoretically and experimentally. The explicit form for the two-photon
output state has been found to exhibit a Werner structure very resilient to losses for any value of the nonlinear
gain parameter g. The theoretical results are found to be in agreement with experimental data obtained by
“entanglement witness” methods and by the quantum tomography of the state generated by a high-g SPDC.
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I. INTRODUCTION

Entanglement, the nonclassical correlation between dis-
tant quantum systems, represents a physical resource lying at
the foundations of quantum information �QI�, quantum com-
putation, and quantum communication. The current prolifera-
tion of relevant applications of quantum entanglement, rang-
ing from one-way quantum computation �1� to the emerging
fields of quantum metrology, lithography, etc. �2�, strength-
ens the need for new flexible and reliable techniques to gen-
erate entangled states with increasing dimensions.

Entangled photonic qubit pairs generated under suitable
phase-matching conditions by spontaneous parametric down-
conversion �SPDC� in a nonlinear �NL� crystal have been
central to many applications ranging from teleportation �3� to
various quantum key distribution protocols �4�. Today the
realization of reliable SPDC sources with large efficiency,
i.e., with large “brilliance,” able to generate entangled pure
states is of key interest as they largely determine the range of
applications of the sophisticated optical methods required by
modern QI. Recently, high-brilliance sources of polarization-
entangled states have been realized by using bulk crystals
�5–7�, periodically poled NL crystals �8�, and bulk crystals
with fiber-coupled SPDC radiation �9�. The extension of
these methods to higher-dimensional QI qubit spaces could
lead to new information processing tasks �10� and requires
the development of appropriate technological and theoretical
tools.

In this framework the investigation of multiphoton states
is of fundamental importance, on both conceptual and prac-
tical levels, e.g., for nonlocality tests �11,12� or for QI appli-
cations �10�. The direct approach to generating bipartite mul-
tiphoton entanglement is the adoption of the SPDC process
in a high-gain �HG� regime. The number of photons gener-
ated depends on the nonlinear gain g of the parametric pro-
cess; g can be increased by the adoption of a high-power
pumping laser and high-efficiency NL crystals. Recently
four-photon entangled states have been generated with or
without quantum injection �13–19�. Only very recently has
been observed the generation of bipartite multiphoton en-
tangled states created by means of HG SPDC been observed
�20�.

The aim of the present paper is to investigate theoretically
and experimentally relevant aspects of the output wave func-

tion of SPDC in the HG regime. The adopted approach is to
generate a multiphoton state and then to “extract” a two-
photon component, which exhibits quite interesting features.
This method, pioneered in �20�, presents different advan-
tages. First, the techniques for single-photon detection and
characterization can be adopted. Second, it describes the loss
effect associated with any communication process on a mul-
tiphoton entangled state.

Here we present a significant theoretical model to de-
scribe the overall process; then we provide a test of the
model by a thorough experimental investigation. The propa-
gation over a lossy channel is simulated by the conventional
beam-splitter �BS� model. We analytically derive the density
matrix of the two-photon state generated by postselection,
after the effects of loss have taken place. On the theoretical
side, the conceptually innovative contribution of the present
work is the demonstration that the output state is a Werner
state �WS� �21�, i.e., a weighted superposition of a maxi-
mally entangled �singlet� state with a fully mixed state.
Werner states play a paradigmatic role within quantum infor-
mation; indeed they determine a family of mixed quantum
states that includes both entangled and separable states. They
model a decoherence process occurring on a singlet state
traveling along a noisy channel, and hence are adopted to
investigate the distillation and concentration processes
�22–24�. Furthermore, depending on the singlet weight they
can exhibit either entanglement and violation of Bell in-
equalities, or only entanglement, or separability.

The explicit dependence of the singlet weight, the charac-
teristic parameter of the WS, on the NL gain value g of the
SPDC has been theoretically derived leading to the demon-
stration that the two-photon state is entangled for any large
value of g. The theory is supported by a thorough experimen-
tal investigation which shows the Werner feature of the out-
put state. This condition is investigated thoroughly by ex-
ploiting the extensive knowledge available on Werner states,
by modern techniques like the “entanglement witness,” and
by making connections with various forms of state entropy
�25,26�. As a significant theoretical remark, note that while
previous realizations of Werner states �26,27� were based on
the realization of isotropic depolarizing channels acting on
two-photon states, in the present context the Werner structure
naturally arises as a consequence of the effect of the losses
on the multiphoton state and of the subsequent projection of
this state over a two-photon state.
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The present paper is organized as follows. In Sec. II, the
density matrix representing the two-photon reduced state
arising from HG SPDC after propagation over lossy channels
is analyzed theoretically. We find that, for any value of g, the
resulting two-photon state is a Werner state. Resilience of
entanglement is theoretically demonstrated for any value of g
in the high-loss �HL� approximation. In Sec. III, the results
of the theory are compared with the corresponding experi-
mental data obtained by conventional quantum state tomog-
raphy �QST� and by adopting entanglement-witness mea-
surement procedures.

II. SPDC IN HIGH-LOSS REGIME: GENERATION
OF WERNER STATES

In this section, we theoretically analyze the effect of
losses on HG SPDC multiphoton states. Recently Durkin et
al. �28� demonstrated the persistence of some kind of sym-
metry, implying entanglement in multiphoton SPDC states in
the presence of polarization-independent photon losses. Here
we explicitly derive the expression of the SPDC density ma-
trix in the regime of induced high photon losses through
coincidence measurements and demonstrate that it corre-
sponds to a WS for any value of g. In the present model the
effects of both losses and imperfect detections on the output
states are simulated, as usual, by the insertion of beam split-
ters on the two propagation modes ki �i=1,2� �Fig. 1�. The
results of this study demonstrate the resilience of bipartite
entanglement for any value of g. This implies that, even in
the absence of these induced losses, the initial SPDC state is
entangled for any g, because of the basic impossibility of
creating or enhancing the entanglement by means of local
operations acting on a nonentangled state �29�. The main
motivation for the present investigation resides in the experi-
mental entanglement assessment on multiphoton HG fields
by introducing light-absorbing filters on the correlated pho-
ton paths. The approximate expression of the density matrix
also provides an intuitive explanation of the behavior of
SPDC states in the HG and HL regimes.

The Hamiltonian of the SPDC process in the interaction
picture reads �30,31�

Ĥ = i��â1H
† â2V

† − â1V
† â2H

† � + H.c. �1�

where âij
† represents the creation operators associated with

the spatial propagation mode ki, with polarization j= �H ,V�.
H and V stand for horizontal and vertical polarization. � is a
coupling constant which depends on the crystal nonlinearity
and is proportional to the amplitude of the pump beam. This

Hamiltonian generates a unitary transformation Û=e−iĤt/�

acting on the input single-photon Fock state
�1�1H�0�1V�0�2H�0�2V= �1,0 ,0 ,0�. The output state ��out�
= Û�1,0 ,0 ,0� is easily obtained by virtue of the disentan-
gling theorem �30,32,20�:

��out� =
1

C2 	
n=0

�


n + 1�n��−
n� �2�

where ��−
n� is the n-generated pairs term:

��−
n� =

1

n + 1

	
m=0

n

�− 1�m�n − m�1H�m�1V�m�2H�n − m�2V

�3�

and �=tanh g, C=cosh g �15�. The parameter g��tint ex-
presses the NL gain of the parametric process, tint being the
interaction time. The average number of photons generated
per mode is equal to n̄=sinh2 g.

Let us first consider the contribution ��−
n���−

n� to the over-
all density matrix. To investigate the propagation over a
lossy channel, a beam splitter with transmittivity � for any
polarization and spatial mode is assumed to simulate the ef-
fect of channel losses and of detector inefficiencies. Further-
more, perfect detectors with �QE=1 measure the output state
�33� �Fig. 1�. The symmetry of the entangled state after
losses is preserved by assuming � to be mode and polariza-
tion independent. The contribution ��−

n� to the SPDC state is
expressed in terms of the BS operators �âij in

† � associated
with the input modes �ki

in�:

FIG. 1. �Color online� �a� Schematic layout of the attenuated
high-gain spontaneous parametric down-conversion generated in a
type-II BBO nonlinear crystal. �b� Simulation of losses by the in-
sertion of a beam splitter over each propagation mode ki. Inset: each
beam splitter couples input modes aIN

† , with unpopulated ones �aIN�
†�.
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��−
n� =

1

n + 1

1

n!
�â1H in

† â2V in
† − â1V in

† â2H in
† �n�0,0,0,0� .

�4�

The BS’s couple the input modes �ki
in� with the transmit-

ted modes �ki
out� and the reflected modes �k̃i

out�. The output-
state expression is found by substituting the operators �âij in

† �
with their expressions in term of the operators �âij out

† �, asso-
ciated with the output transmitted modes �ki

out�, and the op-

erators �b̂ij out
† �, associated with the output reflected modes

�k̃i
out�, through the BS input-output matrix �33�

âij out
† �t�

b̂ij out
† �t�

� =  
� i
1 − �

i
1 − � 
�
�âij in

† �t�

b̂ij in
† �t�

� . �5�

The input state evolves into an output state which is defined
over the four transmitted modes and the four reflected
modes. This state is expressed through the Fock states

�n1H ,n1V ,n2H ,n2V�a � �n1H ,n1V ,n2H ,n2V�b where the first term
in the tensor product represents modes transmitted by the BS
and hence detected �â modes� while the second term ex-

presses the reflected modes �b̂ modes�.
The density matrix 	out= ��−

n�out��−
n�out of the n-pair term

of the SPDC state can be easily obtained from the previous
expressions:

	out =
1

n + 1
 1

n!
�2

	
k,li

	
h,f j

A*�h,�f j��A�k,�li���l1,l2,l3,l4�a � �n

− k − l1,k − l2,k − l3,n − k − l4�ba�f1, f2, f3, f4��b�n − h

− f1,h − f2,h − f3,n − h − f4� �6�

with

A�x,�yk�� = n

x
�n − x

y1
� x

y2
� x

y3
�n − x

y4
��− 1�x�y1+y2+y3+y4�− i
1 − ��2n−y1−y2−y3−y4



y1!�n − x − y1�!y2!�x − y2�!y3!�x − y3�!y4!�n − x − y4�! �7�

and 	x,yi
�	x=0

n 	y1,y4=0
n−x 	y3,y2=0

x . Since we are interested in the
reduced density matrix �a

n defined over the transmitted modes
�ki

out�, �a
n=Trb���−

n���−
n��out, we need to trace 	out over the

undetected reflected modes. The result is

�a
n =

1

n + 1
 1

n!
�2

	
k,li

	
h,f j

A*�h,�f j��A�k,�li��


�l1,l2,l3,l4�aa�f1, f2, f3, f4� 
 ��n − k − l1,n − h − f1�


��k − l2,h − f2���k − l3,h − f3���n − k − l4,n − h − f4� .

�8�

The final expression for the n-pair contribution to the SPDC
density matrix is

�a
n =

1

n + 1	
k,li

	
h,f j

�− 1�k+h�1 − ��2nS�h,k,l2�S�h,k,l3�


S̃�h,k,l1�S̃�h,k,l4��l1,l2,l3,l4��k − h + l1,h − k + l2,h − k

+ l3,k − h + l4� �9�

where S�h ,k , p�=p
� k
p

�� h
k−p

� , S̃�h ,k , p�=p
� n−k
p

�� n−h
k−h+p

�, and
= �

1−� .
Up to now we have considered arbitrary, polarization-

symmetric losses. In the following we make the additional
assumption of very large losses, i.e., HL, which greatly sim-
plifies our task. Such approximation is expressed by the re-

lation �n̄�1, �n̄ being the average number of photons trans-
mitted by the BS per mode. This condition enables us to take
into account only the terms of the sum Eq. �9� of order ��2,
hence considering only matrix elements corresponding to no
more than two transmitted photons. As a final step, we as-
sume to detect one photon on each mode ki

out by the two-
photon coincidence technique. In this way the vacuum terms
affecting one or both vectors ki

out are dropped. In summary,
this coincidence procedure guarantees, by postselection, that
we are dealing only with matrix elements arising from the
tensor product of the states ��1,0,1,0�, �1,0,0,1�, �0,1,1,0�,
�0,1,0,1��, which correspond to the states
��H�1�H�2 , �H�1�V�2 , �V�1�H�2 , �V�1�V�2�. The n-pair contribu-
tion �post

n to the SPDC two-photon density matrix hence reads

�post
n =

1

6
n�1 − ��2n


2�
�n − 1� 0 0 0

0 �1 + 2n� − �n + 2� 0

0 − �n + 2� �1 + 2n� 0

0 0 0 �n − 1�
� .

�10�

We note that the above density matrix has the form of a

Werner state �W= p��−���−�+ 1−p
4 I, with p=

�n+2�

3n , which is a
mixture with probability p of the maximally entangled state
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��−�=2−1/2��H�1�V�2− �V�1�H�2� and of the maximally chaotic
state I /4, I being the identity operator on the overall Hilbert
space. These states are commonly adopted in QI, since they
model a decoherence process occurring on a singlet state
traveling along an isotropic noisy channel �34�.

The complete density matrix for the SPDC output state is
obtained by substituting the �post

n matrices into the expression
�th

II = 1
C4 	n=0

� �n+1��2n�post
n . All the terms �post

n sum up incoher-
ently. Let us explain the latter procedure. In the actual con-
ditions any ���−

n���−
n�� leads, after the BS action, to two trans-

mitted photons and 2�n−1� reflected photons. Different n
numbers of input pairs lead to the discard of different num-
bers of reflected photons; hence any mutual coherence is
destroyed after the tracing operation. The normalized density
matrix turns out to be

�th
II =�

1 − p

4
0 0 0

0
1 + p

4
−

p

2
0

0 −
p

2

1 + p

4
0

0 0 0
1 − p

4

� . �11�

The SPDC density matrix �th
II , given by the sum of Werner

states, is a WS itself, with singlet weight

p =
1

2�̃2 + 1
�12�

with �̃= �1−��tanh g. In the limit �→0, �̃=tanh g. For large

values of g, i.e., for �̃→1, and in the hypothesis of very high

losses, the singlet weight p�
1
3 approaches the minimum

value 1
3 . Since the condition p�

1
3 implies the well-known

nonseparability condition for a general WS, we have demon-
strated for large g the expected high resilience against de-
coherence of the entangled singlet state �21�. The graph of
Fig. 2 shows the behavior of singlet weight p as a function of
the interaction parameter g.

III. EXPERIMENTAL REALIZATION

The previous theoretical results have been experimentally
tested for different values of the parametric NL gain g �Fig.
3�. The main source was a Ti:sapphire mode-locked laser
�device Coherent MIRA� further amplified by a Ti:sapphire
regenerative amplifier �Coherent Rega 9000� �A� operating
with pulse duration 180 fs. The amplifier could operate at a
repetition rate either 250 or 100 kHz leading to an energy per
pulse, respectively, of 4 and 8 �J. The output beam was
frequency doubled in a uv beam at �p=397.5 nm through a
second harmonic generation �SHG� process, achieved by fo-
cusing the infrared beam into a 1-mm-thick �–barium borate
�BBO� crystal, cut for type-I phase matching, through a lens
with focal length of 20 cm. The nonlinear crystal was placed
at 5 cm from the beam waist in order to avoid crystal dam-
age and beam spatial distortion. The uv beam then excited a
SPDC process in an L=1.5-mm-thick BBO NL crystal slab
�Fig. 3�. The SPDC-generated photons with degenerate
wavelengths �WL’s� �=2�p=795 nm propagated along the
k1 and k2 modes. A � /2 wave plate �WP� and an L

2 thick
BBO crystal were placed on each mode to ensure the accu-
rate compensation of all residual birefringence effects com-
ing from the main BBO crystal, cut for type-II phase match-
ing �5�. In each mode ki, an additional glass plate �Gp�
ensured a tight balance between the two polarization emis-
sion cones of the SPDC process. The balance between the

FIG. 2. �Color online� Theo-
retical singlet weight p of the
Werner states versus nonlinear
parametric gain g. The theoretical
two-photon density matrices �th

II

are reported for some gain values
�g=0.1,1 ,3�.
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two cones was achieved by suitable tilting of Gp in order to
vary the ratio between the transmittivities for the s- and
p-polarized waves. Calibrated neutral attenuation filters �At�
placed along modes k1 and k2 were adopted to assure the
condition of high losses and hence the single-photon detec-
tion regime. The polarization-state analysis was carried out
through two � analyzers �T1 and T2 in Fig. 3� each one
consisting of a pair of � /4+� /2 optical wave plates, a po-
larizing beam splitter �PBS�, a single-mode fiber-coupled de-
tector SPCM-AQR14-FC with an interferential filter of band-
width ��=4.5 nm placed in front of it. The combination of
the uv � /2 WP �WPP� and PBSP allowed a fine tuning of the
uv pump power exciting the NL crystal.

In a first experiment we estimated the gain value g of the
optical parametric process and the overall quantum efficien-
cies of the detection apparatus on both modes. The count
rates of D1 and D2 and the coincidence rate of �D1 ,D2� were
measured for different values of the uv power �Fig. 4�. The
plots of Figs. 4�a� and 4�b� clearly show the onset of the NL
parametric interaction with large g, thus implying the gen-
eration of many photon pairs. The gain value of the process
is obtained by fitting the count rates Ni of detector Di, de-
pending on the uv pump power Puv, with the function

Ni�g�=R
�i�

2

1−�1−�i��2 �20� where �=tanh g �i is the quantum

efficiency on mode ki, and R is the repetition rate of the
pump source. The gain value g depends on the uv power,
namely, g=�
Puv, where the parameter � takes into account
the efficiency of the NL process. The maximal value of gain
obtained has been found as gmax=1.39±0.05, which leads to
a mean photon number per mode n̄=sinh2 gmax=3.5±0.4. In
conclusion the maximal total number of generated photons
on k1 and k2 modes through the SPDC process is M =4n̄
=14.0±1.6. By means of the previous fits, we could also
estimate the overall detection efficiencies �i on the ki mode,
which results from the glass attenuation, the fiber coupling,
and the detection quantum efficiencies: �1=0.036±0.005

and �2=0.037±0.005. Using the previous values we find
�n̄�0.1. The detected coincidence rate N12 of �D1 ,D2� is
easily found to be described by the following expression:

N12�g� = R
�1�2�2��4t1t2 − 1�

�1 − �2t1��1 − �2t2���2t1t2 − 1�
�13�

with ti=1−�i. Figure 4�b� reports the measured rate coinci-
dence and the fit curve with the model of Eq. �13�. Starting
from the previous values of �i, by the last fit we obtained
g̃max=1.334±0.001. This value is found slightly lower than

FIG. 3. �Color online� Experi-
mental setup adopted for
multiphoton-state generation by
means of SPDC process and char-
acterization by QST �tomographic
setups Ti�.

FIG. 4. �Color online� �a� Count rates of �D1� and �D2� as a
function of the normalized uv power. The continuous line expresses
the best-fit result. �b� Coincidence rate of �D1 ,D2� as a function of
the normalized uv power. The continuous line expresses the best-fit
result.
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the value of gmax. This discrepancy can be attributed to an
imperfect spatial correlation between the two fiber-coupled
modes k1 and k2, which causes a decrease in the coincidence
rate.

The main experimental result of the present work is the
full characterization of the two-photon state. We recon-
structed the density matrix �expt

II of the generated two-qubit
state on k1 and k2 modes by adopting the quantum state
tomography method �35�. The experimental density matrix
�expt

II is obtained by first measuring the two-photon coinci-
dences �D1 ,D2� for different settings of the QST setup, T1

and T2, and then by applying a numerical algorithm to esti-
mate the density matrix. In a low-gain condition the SPDC
state generated on k1 and k2 modes is expected to be in the
singlet state ��−�=2−1/2��H�k1

�V�k2
− �V�k1

�H�k2
�, with excel-

lent agreement between theory and experiment �Fig. 5�d��.
By increasing g, the � elements corresponding to
�H�k1

�H�k2k1
�H�k2

�H� and �V�k1
�V�k2k1

�V�k2
�V� are no longer

negligible and the detection of two photons with the same
polarization is a consequence of the multipair condition
�Figs. 5�a�–5�c��. The experimental results for the density
matrices �expt

II for different g values are in good agreement
with the theoretical prediction �th

II; the mean value of fidelity

between the four comparisons is F=0.996±0.002, where

F��th
II ,�expt

II �=Tr2

�th
II�expt

II 
�th
II .

The density matrices �expt
II can now be adopted to estimate

the singlet weight, tangle, and linear entropy of the generated
state. The density matrix �W of a Werner state is given by the
expression �11�, as said. The singlet weight �p� can be di-
rectly obtained from the matrix elements as p= ��expt

II �22

+ ��expt
II �33− ��expt

II �11− ��expt
II �44. Werner states are entangled �p

�
1
3

� or separable �p�
1
3

�, the extreme conditions being the
pure singlet �p=1� and the totally mixed state �p=0�. The
tangle is a parameter expressing the degree of entanglement
of the state, which is defined as �=C2, where C is the con-
currence of the state �36�; ��0 is a necessary and sufficient
condition for a 2
2 state to be entangled. Another important
property for a mixed state is linear entropy �S�, which quan-
tifies the degree of disorder, viz., the mixedeness of the sys-
tem. For a system of dimension 4, it is given by S= 4

3 �1
−Tr��2��. In the case of a Werner state, we have SW= �1
− p2�. For Werner states, tangle and linear entropy are found
to be related as follows �37,38�:

FIG. 5. �Color online� Theoretical �
th

�left plot� and experimental �expt
II �right plot� density matrices for different gain values g. The

experimental density matrices have been reconstructed by measuring 16 two-qubit observables through the two tomographic setups �Ti�.
Each tomographic measurement lasted a time t and yielded maximum twofold counts �CC� for the �HV� projection of �a� t=1 s, CC
�9300; �b� t=2 s, CC�12 000; �c� t=15 s, CC�2000; �d� t=120 s, CC�1300.
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��SW� = �
1

4
�1 − 3
1 − SW�2 for 0 � SW �

8

9
,

0 for
8

9
� SW � 1.� �14�

For each experimental value of g, �S ,�� are estimated start-
ing from the experimental density matrix. The agreement
between experimental results and theoretical predictions is
found satisfactory �Fig. 6�a��.

An alternative method to establish whether a state is en-
tangled or not is based on the concept of entanglement wit-
ness. The estimation of the tangle adopted above requires the
complete knowledge of the density matrix of the bipartite
quantum system. On the other hand, the entanglement wit-
ness exploits partial a priori knowledge of the quantum state,
in particular the class to which it belongs: here the Werner
one. It can be directly estimated with fewer measurements
�in the present case 9 instead of 16� and with a simpler data
elaboration. A state � is entangled if and only if there exists

a Hermitian operator Ô, a so-called entanglement witness,

which has positive expectation value Tr�Ô�sep��0 for all
separable states �sep and has negative expectation value

Tr�Ô���0 on the state � �39–43�. For Werner states �W the
method proposed in �25,44� leads to the following
entanglement-witness operator:

ÔW =
1

2
��H��H��H��H� + �V��V��V��V� + �D��D��D��D�

+ �F��F��F��F� − �L��R��L��R� − �R��L��R��L�� �15�

where �D�= 1

2

��H�+ �V�� and �F�= 1

2

��H�− �V�� express diago-
nally polarized single-photon states, while �L�= 1


2
��H�

+ i�V�� and �R�= 1

2

��H�− i�V�� express left- and right-circular
polarization states. The relationship between the expectation

value for a Werner state WW=Tr�ÔW�W� and the Werner
weight p is found to be

WW�p� =
1 − 3p

4
�16�

�7�, leading to WW�p��0 for p�
1
3 . Experimentally

Tr�ÔW�expt
II � has been estimated through eight projective mea-

surements �the six projectors appearing in �15� and the op-
erators ��H��V��H��V� , �V��H��V��H�� for normalization �26��.
In conclusion, for each g value, a point of the Cartesian plane
of coordinates �p ,W� is obtained �Fig. 6�b��. The solid line
reports the theoretical dependence �16�. The comparison
demonstrates a good agreement between the theoretical pre-
diction and experimental results.

By the different methods described above the entangle-
ment condition has been found to be realized for a value of g
up to 1.15±0.02 �Fig. 5�c��, corresponding to an average
number of photons equal to M =4n̄=8.0±0.8 before losses.
For higher values of g the presence of bipartite entanglement
is degraded by decoherence effects, mostly due to imperfect
correction of the walk-off effect in the BBO crystal and to
time distinguishability introduced by the femtosecond pump
pulse.

IV. CONCLUSIONS

In summary, the present work shows that the multiphoton
states generated by SPDC exhibit a bipartite entanglement
even in the presence of high losses, confirming previous
analysis �28�. An explicit form has been derived for the out-
put two-photon state: a Werner state. The theoretical results
are found to be in very good agreement with experimental
data. We believe that the present results could be useful to
investigate the resilience of entanglement in lossy communi-
cation. The present approach can be extended to investigate
the quantum injected optical parametric amplifier �45,15,16�.
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FIG. 6. �Color online� �a� Measured tangle parameter � as a
function of the entropy S of the state. Continuous line, theoretical

plot �14�. �b� Measured witness parameter W=Tr�ÔW�expt
II � as a

function of singlet weight p. Continuous line, theoretical plot �16�.
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