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Abstract. A two qubit quantum gate, namely the C-phase, has been realized by exploiting the longitudinal
momentum (i.e. the optical path) degree of freedom of a single photon. The experimental setup used to
engineer this quantum gate represents an advanced version of the high stability closed-loop interferometric
setup adopted to generate and characterize 2-photon 4-qubit phased Dicke states. Some experimental
results, dealing with the characterization of multipartite entanglement of the phased Dicke states are also
discussed in detail.

1 Introduction

Quantum entanglement, defined by E. Schrödinger as “the
characteristic trait of quantum mechanics”, represents the
key resource for modern quantum information (QI). An
entangled state shared by two or more separated parties
is an essential resource for fundamental QI protocols, oth-
erwise impossible with classical systems, such as quan-
tum teleportation [1], quantum computing [2], quantum
cryptography [3] and quantum dense coding [4]. By us-
ing entangled states we can also investigate the nonlo-
cal properties of quantum world [5,6]. Quantum optics
represents an excellent experimental test bench for var-
ious novel concepts introduced within the framework of
QI theory. Quantum states of photons may be easily and
accurately manipulated using linear and nonlinear optical
devices and measured by efficient single-photon detectors.

Many QI tasks and fundamental tests of quantum me-
chanics deal with a large number of qubits [7]. For ex-
ample, the larger the number of qubits, the stronger the
violation of Bell inequalities and the computational power
of a quantum processor. Two approaches may be followed
to increase the number of qubits. By the first one the num-
ber of entangled particles is increased [8–11]. In this way,
multi-qubit entangled states are created by distributing
the qubits between the particles so that each of them car-
ries one qubit. As a second strategy more than one qubit
is encoded in each particle, exploiting different degrees of
freedom (DOFs) of the photon [12–17]. The entanglement
of two photons in different DOFs corresponds to produce
a hyperentangled (HE) state. Compared to multiphoton
entangled states, HE states offer important advantages as
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far as purity and generation/detection rate are concerned.
The paper is organized as follows: we describe the gener-
ation of 4-qubit phased Dicke states based on the hyper-
entanglement of 2 photons. We will discuss the experimen-
tal results concerning the measurement of a novel class of
entanglement witness and we will present the first exper-
imental realization of the C-phase quantum gate based
only on the path DOF of a single photon.

2 Hyperentanglement source

The SPDC source used in this work [18] is based on the si-
multaneous entanglement of 2 photons in the polarization-
longitudinal momentum DOFs. The scheme of the source
is shown in Figure 1. Polarization entanglement is cre-
ated by double excitation (back and forth, after reflection
on a spherical mirror) of a 1 mm Type I BBO crystal
by a UV laser beam. The backward emission determines
the so called V -cone, with SPDC photon polarization
transformed from horizontal (H) to vertical (V) by dou-
ble passage of the two photons through a quarter wave-
plate (QWP). The forward BBO emission corresponds to
the H-cone. Temporal and spatial superposition guaran-
tees indistinguishability of the two emission cones and al-
lows for the creation of the polarization entangled state
1√
2
(|H〉A|H〉B + eiγ |V 〉A|V 〉B), by assuming the following

relations between physical and logical qubits: |H〉 → |0〉,
|V 〉 → |1〉.

The two photons are emitted with equal probability
over symmetrical directions on the overlapping cone sur-
face then transformed into a cylinder by the lens L (see
Fig. 1). By selecting different pairs of correlated emis-
sion modes with single mode fibers [19] or with a 4-hole
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Fig. 1. (Color online) Source of hyperentangled photon states.
The relative phase between the |HH〉AB and |V V 〉AB contri-
butions can be adjusted by translation of the spherical mirror.
A lens L located at a focal distance from the crystal transforms
the conical emission into a cylindrical one. The dimensional-
ity of the state can be increased by selecting further pairs of
correlated modes on the mask.

screen [20] path- (longitudinal momentum-) entanglement
is created. In our experiment, the state 1√

2
(|r〉A|�〉B +

eiδ|�〉A|r〉B) has been generated by selecting 2 pairs of
correlated modes. Here |r〉 (|�〉) stands for the optical path
followed by the photons in the right (left) direction, with
the following relation between physical states and logical
qubits, |r〉 → |0〉, |�〉 → |1〉. The obtained HE state is
written as follows:

|HE4〉 =
1
2
(|HH〉AB +eiγ |V V 〉AB)⊗(|r�〉AB +eiδ|�r〉AB).

(1)
The above described scheme has been also used to explore
a higher-dimensional Hilbert space [21–23]. In the follow-
ing we’ll describe the use of this setup to generate and
measure phased Dicke states.

3 Hyperentangled phased-dicke states:
generation and characterization

In the computational basis {|0〉, |1〉}, the 4-qubit phased
Dicke state with 2 excitations (i.e. 2 logic |1〉) is defined
as follows:

|Dph
4 〉1234 =

1√
6

(|0011〉+ |1100〉+ |0110〉+ |1001〉

− |0101〉 − |1010〉)
1234

(2)

and derives from the 4-qubit symmetric Dicke state
|D(2)

4 〉1234 [24] by simple unitary transformations:
|D(2)

4 〉1234 = Z1Z3|Dph
4 〉1234.

Dicke states, which have recently attracted much in-
terest for their multipartite entanglement properties, have
been engineered in multi-photon experiments [25,26] while
the phased Dicke states have been engineered in the hy-
perentanglement framework [27].

The latter have been obtained by applying suitable
unitary transformations on the 2-photon 4-qubit HE
states. This technique makes possible the realization of
such multipartite states, with relevant advantages in terms

Fig. 2. (Color online) (a) Engineered source of the state |ξ〉.
The polarization-longitudinal momentum hyperentanglement
source has been properly modified to engineer the state re-
ported in equation (4). The quarter waveplate QWP1 rotates
the polarization of the SPDC photons emitted by the first exci-
tation of the crystal while the quarter waveplate QWP2 allows
to unbalance the relative weight between the |HH〉 and the
|V V 〉 contributions. The � and r modes on the V -cone are
intercepted by two beam stops in order to cancel the term
|V V 〉AB|�r〉AB in the HE state (1). (b) Phased Dicke state
generation and measurement setup. A thin glass plate, placed
before the Sagnac interferometer, allows to set the momentum
phase δ = π. The phased Dicke state has been obtained by
applying the unitary transformation U , shown in equation (3),
to the state |ξ〉. The BS allows to implement the Hadamard
gates in the path DOF while the half waveplate (HWP) at
45◦ (0◦), intercepting both the photons, allows to implement

the gates CXA
12CXB

34 (CZ
A
12CZ

B
34). The Pauli operators, in the

path DOF, have been measured by exploiting the second pas-
sage through the BS and the thin glass plates φA and φB. The
necessary measurements in the polarization DOF have been
realized by using an analysis setup, the PA box, before the two
detectors. This is composed by HWP, QWP and polarizing
beam splitter (PBS).

of generation rate and state fidelity compared to 4-photon
states. The measurements were performed by a closed-loop
Sagnac scheme with intrinsic almost perfect stability.

3.1 State generation

Here we briefly describe how the experimental setup of
Figure 2 has been used in reference [27] to engineer phased
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Dicke states. Let us consider the following state |ξ〉1234 ≡
1√
6
(|0010〉− |1000〉+2|0111〉)1234. The phased Dicke state

can be obtained by applying a unitary transformation U
to the state |ξ〉:
|D(ph)

4 〉1234 =Z4CZ12CZ34CX12CX34H1H3|ξ〉 ≡ U|ξ〉1234
(3)

where Hj and Zj stands for the Hadamard and the
Pauli σz transformations on qubit j, CXij = |0〉i〈0|11j +
|1〉i〈1|Xj is the controlled-NOT gate and CZij =
|1〉i〈1|11j + |0〉i〈0|Zj the controlled-Z (see Fig. 2). The
transformations CZ12CZ34 are needed to compensate the
optical delay introduced by the CX gates in the Sagnac
loop of Figure 2b. As explained in the previous section,
the |0〉 and |1〉 states are encoded into horizontal |H〉 and
vertical |V 〉 polarization or into right |r〉 and left |�〉 path.
The qubit 1 (2) belongs to the path (polarization) DOF
of the photon A while the qubit 3 (4) belongs to the path
(polarization) DOF of the photon B.

According to those relations the state |ξ〉 reads:

|ξ〉1234 =
1√
6
[(|r�〉 − |�r〉)13|HH〉24 + 2|r�〉13|V V 〉24]

(4)
and may be obtained by suitably modifying the source
used to realize polarization-longitudinal momentum hy-
perentangled states [12,23] (see Sect. 2). Let us consider
now the HE state in equation (1) and Figure 2a. The
SPDC contribution, due to the pump beam incoming
after reflection on mirror M , corresponds to the term
|HH〉(|r�〉−|�r〉), whose weight is determined by the quar-
ter waveplate QWP2 intercepting the UV beam (see [28]
for more details on the generation of the non-maximally
polarization entangled state). The other SPDC contribu-
tion 2|V V 〉|r�〉 is determined by the first excitation of the
pump beam: here the |�r〉 modes are intercepted by two
beam stops and the quarter waveplate QWP1 transforms
the |HH〉 SPDC emission into |V V 〉 after reflection on
mirror M . The relative phase between the |V V 〉 and |HH〉
is varied by translation of the spherical mirror M.

The transformation (3) |ξ〉 → |D(ph)
4 〉 is realized by

using two waveplates and one beam splitter (BS): the two
Hadamards H1 and H3 in (3), acting on both path qubits,
are implemented by a single BS for both A and B modes.
For each controlled-NOT (or controlled-Z) gate appear-
ing in (3) the control and target qubits are respectively
represented by path and polarization of a single photon: a
half waveplave (HWP) with axis oriented at 45◦ (0◦) with
respect to the vertical direction and located into the left
|�〉 (right |r〉) mode implements a CX (CZ) gate.

After these transformations, the optical modes are spa-
tially matched the second time on the BS, closing in
this way a closed-loop Sagnac interferometer that allows
high stability in measuring the path Pauli operators (see
Fig. 2b). Polarization Pauli operators are measured by
standard polarization analysis setup in front of detectors
(i.e. PA box in Fig. 2b).

Note that, the |0〉 (|1〉) state, for the path DOF, is
identified by the clockwise (counterclockwise) mode in the
Sagnac loop.

It is worth of stressing once more the high stability
guaranteed by the Sagnac interferometric scheme in per-
forming the path analysis.

3.2 Entanglement characterization via structural
witness

The presence of entanglement in the generated phased
Dicke states was tested by adopting a recently proposed
class of entanglement witnesses, so-called structural wit-
nesses [29].

For a composite system of N particles, the structural
witnesses [29] have the form

W (k) := 11N − Σ(k) (5)

where k is a real parameter (the three dimensional wave-
vector transferred in a scattering scenario), 11N is the iden-
tity operator and

Σ(kx, ky, kz)=
1

B(N, 2)

×
[
cxŜxx(kx)+cyŜ

yy(ky)+czŜ
zz(kz)

]
,

(6)

with ci ∈ R, |ci| ≤ 1. Here B(N, 2) is the binomial coeffi-
cient and the structure factor operators Ŝαβ(k) are defined
as

Ŝαβ(k) :=
∑

i<j

eik(ri−rj)Sα
i Sβ

j , (7)

where i, j denote the i-th and j-th spins, ri, rj their posi-
tions in a one-dimensional scenario, and Sα

i are the spin
operators with α, β = x, y, z. A suitable structural wit-
ness W for the phased Dicke state can be constructed by
considering kx = ky = π and kz = 0:

W = 11N − 1
6

[
Ŝxx(π) + Ŝyy(π) − Ŝzz(0)

]
. (8)

The expectation value of the above witness for the phased
Dicke state is given by Tr(|Dph

4 〉〈Dph
4 |W) = − 2

3 , thus lead-
ing to a robust entanglement detection in the presence
of noise. The witness W measured for the phased Dicke
state [27], is

〈W〉exp = −0.382± 0.012. (9)

We report in Table 1 the experimental values for each
operator appearing in the witness (8).

We have also measured a witness Wmult, introduced
in [30], to demonstrate the genuine multipartite nature of
the generated state. This operator is defined as follows:

Wmult = 2 ·11+
1
6
(Ĵ2

x + Ĵ2
y − Ĵ4

x − Ĵ4
y )+

31
12

Ĵ2
z −

7
12

Ĵ4
z (10)

where Ĵ2
i = 1+ 1

2 Ŝii(ki) and Ĵ4
i = 1+Ŝii(ki)+ 1

4 (Ŝii)2(ki),
i = x, y, z and kx = ky = π, kz = 0. It comes out that
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Table 1. Experimental values of the operators needed to esti-
mate the structural witness in equation (8). The uncertainties
are determined by associating Poissonian fluctuations to the
coincidence counts. Here k refers to the longitudinal momen-
tum DOF while π refers to the polarization DOF.

Operators Involved Local Results
qubits settings

1◦2◦3◦4◦ (1◦3◦)k(2◦4◦)π

Sxx
14 X11X (X1)k(1X)π −0.458 ± 0.013

Sxx
24 1X1X (11)k(XX)π 0.531 ± 0.012

Sxx
34 11XX (1X)k(1X)π −0.384 ± 0.013

Sxx
12 XX11 (X1)k(X1)π −0.545 ± 0.012

Sxx
13 X1X1 (XX)k(11)π 0.597 ± 0.011

Sxx
23 1XX1 (1X)k(X1)π −0.620 ± 0.011

Syy
14 Y11Y (Y1)k(1Y)π −0.617 ± 0.009

Syy
24 1Y1Y (11)k(YY)π 0.590 ± 0.009

Syy
34 11YY (1Y)k(1Y)π −0.528 ± 0.009

Syy
12 YY11 (Y1)k(Y1)π −0.550 ± 0.009

Syy
13 Y1Y1 (YY)k(11)π 0.523 ± 0.010

Syy
23 1YY1 (1Y)k(Y1)π −0.425 ± 0.010

Szz
14 Z11Z (Z1)k(1Z)π −0.327 ± 0.024

Szz
24 1Z1Z (11)k(ZZ)π −0.304 ± 0.024

Szz
34 11ZZ (1Z)k(1Z)π −0.314 ± 0.024

Szz
12 ZZ11 (Z1)k(Z1)π −0.354 ± 0.024

Szz
13 Z1Z1 (ZZ)k(11)π −0.308 ± 0.024

Szz
23 1ZZ1 (1Z)k(Z1)π −0.315 ± 0.024

Table 2. Experimentally measured expectation values of col-
lective spin operators for the phased Dicke state. The uncer-
tainties are determined by associating Poissonian fluctuations
to the coincidence counts.

Operators Local settings Results

1◦2◦3◦4◦ (1◦3◦)k(2◦4◦)π

X1X2X3X4 (XX)k(XX)π 0.673 ± 0.011
Y1Y2Y3Y4 (YY)k(YY)π 0.635 ± 0.009
Z1Z2Z3Z4 (ZZ)k(ZZ)π 0.922 ± 0.010

this equation, in terms of the operators Ŝii(ki) defined in
equation (7), reads:

Wmult =
1
8

(
2 · 11 − 2Ŝxx(π) − 2Ŝyy(π) + Ŝzz(0)

−7Ŝzzzz − 2Ŝxxxx − 2Ŝyyyy
)

(11)

with Ŝzzzz = Z1Z2Z3Z4, Ŝxxxx = X1X2X3X4, Ŝyyyy =
Y1Y2Y3Y4, here the subscripts indicate the qubits involved
in the measurement. The measured values of the operators
Ŝii(ki) are reported in Table 1. By taking into account also
the results reported in Table 2, we obtained

〈Wmult〉 = −0.341± 0.015. (12)

These results already appeared in [27], where a detailed
discussion of the experimental results was lacking. In the
next section we will describe how the same experimental
setup of Figure 2, properly modified, has been adopted to
realize a single photon C-phase gate.

4 Experimental realization of the C-phase
quantum gate

Many efforts have been made in the last years to experi-
mentally implement several basic quantum gates, such as
the CNOT or C-phase gate. The latter was in particular
realized by exploiting the polarization DOF of a photonic
system [31] and, more recently, was implemented within
a quantum dot scenario [32]. The unitary transformation
corresponding to the C-phase, is defined as follows:

Uphase =

⎛

⎜
⎝

1 0 0 0
0 eφ1 0 0
0 0 1 0
0 0 0 eφ2

⎞

⎟
⎠. (13)

The optical setup of Figure 3 shows the high stability
closed-loop displaced Sagnac scheme used in the experi-
ment. It represents a modified version of the one adopted
for the phased Dicke state experiment. Here a second
beam splitter (BS2) intercepting only the optical path
of lower photon has been added. The particular position
of the BS2 enables the realization of a diplaced Sagnac
interferometer, i.e. an interferometric scheme where the
right mode |r〉 and the left mode |�〉 impinge the BS2 in
different points.

Let us now describe how the implemented gate works.
In the HE source, described in Section 2, only one polar-
ization cone, namely the H-cone, is considered and only
one mode, corresponding to the lower photon, is taken into
account. In order to explain the experiment let us consider
only the |r〉B mode coming out of the holed mask, as re-
ported in Figure 3. The BS1 acts as follows:

|r〉B BS1−−−→ 1√
2
(|r〉B + |�〉B). (14)

The photon, arriving at the BS2, can go clockwise (|C〉B)
or counterclockwise (|A〉B) within the diplaced Sagnac.
This corresponds to add a further qubit, encoded in the
path DOF, hence the state in equation (14) becomes:

1√
2
(|r〉B + |�〉B) BS2−−−→ 1√

2
(|r〉B |φr〉B + |�〉B|φ�〉B) (15)

where |φr〉B = 1√
2
(|C〉B + eiφr |A〉B), |φ�〉B = 1√

2
(|C〉B +

eiφ� |A〉B). By considering the following relations between
logical states and physical qubits:

{|0〉1, |1〉1} → {|r〉B , |�〉B}
{|0〉2, |1〉2} → {|C〉B, |A〉B} (16)

the state (15) reads:

1
2
[|0〉1 ⊗ (|0〉 + eφr |1〉)2 + |1〉1 ⊗ (|0〉 + eφ� |1〉)2] =

1
2
(|00〉12 + eφr |01〉12 + |10〉12 + eφ� |11〉12). (17)

The phases φr and φ� can be indipendently varied by us-
ing two thin glass plates placed within the interferom-
eter. This corresponds to implement the transformation

http://www.epj.org


Eur. Phys. J. D (2012) 66: 195 Page 5 of 7

Fig. 3. (Color online) C-phase gate experimental setup based only on the path DOF of a single photon. The control qubit is
identified by the different paths followed by the photon after the BS1 (i.e. |r〉 or |�〉), while the target qubit is given by the
clockwise (|C〉) or counterclockwise (|A〉) path followed by the photon after BS2 within the displaced Sagnac interferometer. The
phase shift performed by the gate has been obtained by using the two thin glass plates φ� and φr, both on the counterclockwise
paths |A〉. Two delayers φd allow to compensate the temporal delay introduced by φ� and φr. The insertion of φ′

d is needed to
avoid interference between the modes coming back from the displaced Sagnac system and impinging on BS1.

Fig. 4. (Color online) Measured oscillations of the single counts with dots representing the experimental data and the solid line
corresponding to the fitting curve. The dark counts have been subtracted. The uncertainties have been determined by associating
Poissonian fluctuations to the single counts. The red (black) data have been measured by projecting the state reported in
equation (17) on |0〉1〈0| (|1〉1〈1|) and varying φr (φ�) with the thin glass plates in the displaced Sagnac interferometer. For
φr = π and φ� = 0 we performed the quantum state tomography of qubit 2. The fidelity have been calculated with respect to
the theoretical ones, i.e. |+〉2〈+| for the state in the box I and |−〉2〈−| for the state in the box II.

Table 3. “Truth table” of the realized C-phase gate. In the
first column we report the logical qubits while in the second
column there are the corresponding physical qubits.

Logical qubit Physical qubit
Control Target Control Target

|0〉1〈0| 1√
2
(|0〉2 + eiφr |1〉2) |r〉B〈r| 1√

2
(|C〉B + eφr |A〉B)

|1〉1〈1| 1√
2
(|0〉2 + eiφ� |1〉2) |�〉B〈�| 1√

2
(|C〉B + eφ� |A〉B)

reported in equation (13) with φr = φ1 and φ� = φ2.
It is worth to remember that both the control and tar-
get qubits of the quantum gate are encoded in the path
DOF of photon B. Precisely, the control qubit is encoded
in the longitudinal momentum of the photon before BS2
(i.e. {|r〉B , |�〉B}) while the target qubit is encoded in the
path followed in the Sagnac scheme (i.e. {|C〉B, |A〉B}).
We report in Table 3 the “truth table” of the engineered
gate.

The second passage through BS2 allows to perform
the measurement of the Pauli operators.

The obtained experimental results are shown in Fig-
ure 4. We measured the oscillations of the single counts by
projecting the state (17) on |0〉1〈0| (|1〉1〈1|) and varying
φr (φ�). The projection on |r〉B〈r| (|�〉B〈�|) was performed
by intercepting the input mode |�〉B (|r〉B).

In the experiment, φr = φ� + π, thus there is a partic-
ular phase factor between φr and φ�, however it is impor-
tant to underline that they can assume any general value
with this setup. In the case φ� = 0, φr = π, we have per-
formed the tomographic reconstruction [33] of the density
matrix related to the state |φr〉B〈φr | and |φ�〉B〈φ�|. These
values correspond to realize a C − NOT gate. As already
pointed out, the second passage through BS2 allows to
measure the Pauli operators σ̂x and σ̂y. The third Pauli
operator σ̂z has been measured by intercepting the mode
in the displaced Sagnac (i.e. |C〉 or |A〉). This corresponds
to make a projection on the computational basis. The fi-
delities of the measured states, calculated with respect to
the theoretical states, are larger than 98%.
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Fig. 5. (Color online) Two alternative schemes allowing the
realization of the C-phase gate based on two DOFs of a single
photon, the polarization and the path. (a) The photon entering
the PBS is in the state |+〉 = 1√

2
(|H〉 + |V 〉) and the PBS

separates the two polarizations |H〉 and |V 〉. The displaced
Sagnac acts as already explained in the Section 4 and the two
modes coming back to the PBS are sent towards the same
detector. (b) The photon entering the BS1 is in the polarization
state |+〉 = 1√

2
(|H〉 + |V 〉). After the BS1 the photon is in

the state 1√
2
(|r〉k|+〉π + |�〉k|+〉π), here the subscript π (k)

indicates the polarization (path) DOF. The employment of two
liquid crystals (LC1 and LC2) allows to vary the relative phase
between the polarizations |H〉 and |V 〉. Precisely, these values
can be independently set for the |�〉 and |r〉 modes.

5 Conclusions and discussion

In this work we have presented the main features of a
4-qubit phased Dicke state, built on the polarization and
longitudinal momentum of the photons. The entanglement
properties have been investigated by a new kind of entan-
glement witness, so-called structural witness. To generate
and measure this state, an interferometric closed-loop
Sagnac scheme with almost perfect intrinsic stability has
been adopted. An advanced version of this setup has al-
lowed to efficiently implement the C-phase quantum gate
based on the optical path of a single photon. We have pre-
sented the obtained experimental results and discussed the
flexibility showed by the engineered setup.

Other experimental schemes can be conceived to real-
ize such quantum gate. For instance two changes can be
implemented (see Fig. 5a):

– by replacing the BS1 with a PBS;
– by exploiting the polarization of the photon before it

arrives at the BS1. Precisely it has to be in the state
|+〉 = 1√

2
(|H〉+ |V 〉) and this can be obtained by plac-

ing a half-waveplate rotated by 22.5◦ with respect to
the vertical polarization.

In this case, the PBS will separate the polarization H and
V and the displaced Sagnac will act as already explained

in the previous section. In this case, the modes coming
back to the PBS will be sent towards the same detector1.

Another possibility, sketched in Figure 5b, concerns
the use of path DOF as the control qubit and of polariza-
tion DOF as the target. Let us consider the input photon
in the state |+〉 encoded in the polarization DOF. De-
pending on the optical path followed after the BS1, an
arbitrary phase can be experimentally assigned to the po-
larization state by employing liquid crystals [34].

Recent developments of integrated quantum circuits
suggest to adopt these systems to realize an intrinsically
stable C-phase gate based on path encoded qubits. It has
been recently demonstrated that, due to the low birefrin-
gence, integrated quantum circuits written by femtosec-
ond laser pulses can support polarization qubits [35–37].
Hence, using this approach to implement the C-phase
gate demonstrated in this experiment and the proposed
schemes sketched in Figure 5a may open interesting de-
velopments in a very challenging research field.
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